WHISPERTEST: A Voice-Control-based Library for
i0S Ul Automation

Zahra Moti

Radboud University
Nijmegen, The Netherlands
zahra.moti@ru.nl

Andrea Continella
University of Twente
Enschede, The Netherlands
a.continella@utwente.nl

Abstract

Dynamic analysis and Ul automation are essential for scalable detec-
tion of privacy leaks, vulnerabilities, and malicious code in mobile
apps. While the Android ecosystem offers a variety of tools, options
for iOS apps are limited and require either access to the app source
code or jailbreaking the test device. To address this gap, we intro-
duce WHISPERTEST, an open-source iOS UI automation library that
operates without jailbreaking. WHISPERTEST is based on a newly
designed approach that leverages Apple’s Voice Control accessibil-
ity feature to interact with app or system Uls via text-to-speech.
During interactions, WHISPERTEST monitors the device system logs
in real time and scrapes the Ul via screenshots and accessibility au-
dits to recover app state changes. We demonstrate WHISPERTEST’s
capabilities through a diverse set of tasks, including a web privacy
measurement and a fully-automated dynamic analysis of 200 child-
directed i0S apps. To overcome the challenges of automating apps
with diverse UI designs, WHISPERTEST optionally integrates multi-
modal large language models to reason about context and interact
with system permission prompts, consent dialogs, subscription
prompts, and age gates. Our exploratory analysis of children’s apps
uncovers widespread use of third-party tracking, limited recogni-
tion of user consent, and unencrypted HTTP requests. Overall, we
show that WHISPERTEST enables scalable dynamic analysis of iOS
applications across diverse tasks, contributing to a safer and more
transparent mobile ecosystem.

CCS Concepts

« Security and privacy — Network security; Software and applica-
tion security; Systems security;

Keywords

i0S, mobile testing, automation, privacy, security

*Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765183

Tom Janssen-Groesbeek*
Radboud University
Nijmegen, The Netherlands
tom.janssen-groesbeek@ru.nl

Steven Monteiro®
University of Twente
Enschede, The Netherlands
s.c.monteiro@student.utwente.nl

Gunes Acar
Radboud University
Nijmegen, The Netherlands
g.acar@cs.ru.nl

ACM Reference Format:

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella,
and Gunes Acar. 2025. WHISPERTEST: A Voice-Control-based Library for
i0OS UI Automation. In Proceedings of the 2025 ACM SIGSAC Conference
on Computer and Communications Security (CCS °25), October 13-17, 2025,
Taipei, Taiwan. ACM, New York, NY, USA, 24 pages. https://doi.org/10.1145/
3719027.3765183

1 Introduction

Automated testing of apps and websites is a crucial means for em-
pirical research in security, privacy, accessibility, and performance,
among others. Beyond academic and industrial research, quality
assurance processes that guarantee software reliability and detect
bugs largely rely on automation and testing libraries. Compared
to browser automation libraries such as Selenium, Playwright, and
Puppeteer, there are a limited number of options for user interface
(UI) automation for mobile apps, even less so for Apple’s notoriously
closed software ecosystem. Many of the existing iOS UI automation
libraries, such as Google’s EarlGrey [1], allow developers to only
test their own apps by relying on Apple’s own Ul testing frame-
work, XCUIAutomation [2]. While Appium XCUITest Driver [3]
can be used for testing any iOS app, it requires a macOS host com-
puter, a complicated setup, and it suffers from instability [4]. This
leaves a gap for a cross-platform, open-source, and low-dependency
automation library that can interact with arbitrary apps, without
modifying the app itself or jailbreaking the test device. With jail-
break tools becoming scarce and some containing malicious code,
their use also raises concerns about forensic integrity [5].

To address this gap, we present WHISPERTEST, an open-source
and versatile iOS app automation library. WHISPERTEST relies on a
newly designed approach that combines text-to-speech and iOS’s
Voice Control accessibility features to send navigational commands
such as tap, scroll, and swipe as voice commands. At run-time, our
library recovers state updates from the device by monitoring system
logs, screenshots, and accessibility audits.

In its core, WHISPERTEST provides a device object that can be
used to install, launch, enumerate, and interact with apps or system
menus, similar to Selenium’s WebDriver [6]. The device object
can also be used to capture network traffic (without decryption)
and gather information about the device’s state—such as what is
displayed on the screen—using optical character recognition (OCR),

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765183
https://doi.org/10.1145/3719027.3765183
https://doi.org/10.1145/3719027.3765183

CCS 25, October 13-17, 2025, Taipei, Taiwan

icon detection, and accessibility audits. WHISPERTEST exposes real-
time system logs to developers, providing a rich source of low-level
debugging information about the device, OS, and processes.

WHISPERTEST is designed to be extensible: it can be integrated
with a decision system to guide app interactions, including Large
Language Models (LLMs), UI agents or simple rule- or trigger-based
logic. To showcase WHISPERTEST’s adaptability in challenging sce-
narios, we design an LLM-based navigation pipeline tailored to
perform privacy-related measurements in 200 apps targeted at chil-
dren!, enabling the detection of advertisements (ads), third-party
trackers, and unencrypted data. We choose these apps because they
are particularly difficult to automate given their animated, cartoon-
ish interfaces and limited accessibility, and the frequent appearance
of consent dialogs and age gates. We also tested WHISPERTEST’s
applicability to broader app categories by conducting additional
experiments on 50 popular non-children’s apps. A larger-scale,
comprehensive demonstration of the applicability of WHISPERTEST
across different app categories is left out of scope. In addition, we
demonstrate how WHISPERTEST can be used for web automation
and for automating iOS system menus and features. Our measure-
ment reveals that children’s apps frequently incorporate third-party
tracking, provide limited recognition of user consent, and occa-
sionally rely on unencrypted HTTP requests—behaviors that only
become observable after active Ul interaction, further motivating a
tool like ours.

In summary, we make the following contributions:

(1) We present WHISPERTEST, an iOS automation library that
leverages Apple’s Voice Control to automate iOS devices.
WHISPERTEST does not require jailbreaking and can interact
with arbitrary apps, websites, and iOS system menus.

(2) To show the versatility and extensibility of WHISPERTEST,
we design and integrate an LLM-based navigation approach
and conduct a survey of tracking and ads on 200 iOS apps
targeted at children.

(3) We demonstrate WHISPERTEST’s capabilities by presenting
additional use cases, including an illustrative web measure-
ment study that compares tracking on news and misinfor-
mation websites.

WHISPERTEST source code and additional materials are publicly
available at: https://github.com/iOSWhisperTest.

2 Background and Related Work
2.1 Mobile Automation Tools

Mobile automation has become essential for testing and analyz-
ing app behavior for purposes including security [7-9], privacy [4,
10, 11], and accessibility [12]. Traditional testing and automation
tools such as Android Debug Bridge (adb) [13] and Appium [14]
have been instrumental in automating mobile interactions and have
been used in many prior studies [4, 15, 16]. Beyond Ul interaction,
dynamic binary instrumentation frameworks such as Frida allow
researchers to reverse engineer mobile apps by adding instrumen-
tation code at runtime [17], while tools such as apktool allow

'We consider apps targeted at children as those with a content rating of 4+ on the App
Store, based on Apple’s age rating system. See: https://developer.apple.com/help/app-
store-connect/reference/age-ratings/

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

repackaging mobile apps to enable TLS decryption and bypassing
certificate pinning [18, 19].

Only a small subset of these libraries can be used for UI test-
ing, which requires the ability to scrape the screen contents and
send events such as taps, scrolls, or swipes. On iOS, most existing
solutions are restricted in functionality due to Apple’s security
model [20]. Below, we give an overview of prominent mobile au-
tomation tools with a focus on the iOS platform.

Keep It Functional (KIF) [21] is an open-source iOS UI testing
framework built on Apple’s XCTest. KIF automates interactions
via accessibility labels, requiring tested apps to be fully accessible.
Since the test code must be embedded while building the app, KIF
only supports white-box testing of apps under developer control.
KIF is macOS-only and supports iOS versions up to 13.

EarlGrey [1], developed by Google, is another XCTest-based
framework offering advanced synchronization and interaction ca-
pabilities, but is also designed for internal app testing. According
to its documentation, EarlGrey supports iOS versions up to 15.

iOS Development Bridge (idb) [22] is a command-line inter-
face designed to automate interactions with iOS simulators and
devices. idb aims to provide a consistent interface for tasks such
as installing apps, managing simulators, and retrieving device logs.
idb depends on Xcode and does not inherently support UI automa-
tion for third-party applications.

Calabash [23] was an open-source mobile automation tool for
testing native and hybrid apps. It supported iOS and Android but
has been officially deprecated and unmaintained since 2017.

Appium [14] provides a flexible solution for automating both
Android and iOS apps using the WebDriver protocol and has been
widely adopted in research for automating Ul interactions at scale [4,
24-28]. On iOS, Appium relies on the Appium-XCUITest driver [3],
which builds on Apple’s XCUITest framework and WebDriverA-
gent [29]. Appium-XCUITest driver exclusively runs on macOS,
relies on Xcode integration, and found to be unreliable [4, 30-32].

NoSmoke [33] is a UI automation framework designed to sup-
port automated testing and dynamic analysis of Android and i0S
apps [33]. Similar to Apium, NoSmoke is based on the WebDriver
protocol and relies on Apple’s XCTest framework for iOS automa-
tion, requiring macOS to operate. However, NoSmoke has not re-
ceived updates in over three years.

pymobiledevice3 [34] is a Python-based library that communi-
cates with i0S devices over USB or network using Apple’s internal
protocols. It enables access to a range of low-level services such as
lockdownd (device pairing), afc (filesystem access), syslog (live
logging), and pcapd (packet capture). These capabilities are exposed
through an open Python framework and do not require jailbreaking,
making the platform practical for real-world app analysis. Tools
similar to pymobiledevice3 include go-ios[35], a Golang-based
CLI for iOS device interaction, and 1ibimobiledevice [36], a cross-
platform library offering similar access to iOS internals through
open-source implementations of Apple’s device protocols.

Comparison with Existing Tools Unlike tools used in most
prior works, the WHISPERTEST can run on almost any operating sys-
tem, not just macOS. WHISPERTEST operate on non-jailbroken i0S
devices, enabling the testing of many apps that with anti-debugging
measures and refuse to run on jailbroken devices—a critical feature
given that the latest two major iOS versions (17 and 18) currently

https://github.com/iOSWhisperTest
https://developer.apple.com/help/app-store-connect/reference/age-ratings/
https://developer.apple.com/help/app-store-connect/reference/age-ratings/

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

lack any public jailbreaks. Unlike tools that depend on outdated plat-
forms or unofficial App Store interfaces, WHISPERTEST can install
apps using voice commands directly from the App Store (§ 4.3). This
alternative approach proved resilient when IPATool, a commonly
used tool to download and install iOS apps, became temporarily
unusable for months due to undocumented backend changes by
Apple [37, 38]. By leveraging Raspberry Pi and a USB On-The-Go
setup [39], WHISPERTEST experimentally supports silently sending
voice commands and emulating peripherals such as microphones,
keyboards, and mice. Its lightweight, modular design accommodates
various interaction strategies, including the LLM-guided naviga-
tion that we demonstrated in §5.1. WHISPERTEST also has certain
shortcomings compared to existing tools. For instance, it cannot
decrypt the network traffic and is slower than existing tools due
to its use of voice commands. Despite these limitations, we be-
lieve WHISPERTEST is a versatile, extensible and cross-platform
library that supports a diverse set of analysis and testing scenarios.
Note that WHISPERTEST is designed for iOS automation and by
“cross-platform” we refer to support for different operating systems
(macOS, Linux, Windows) on the controller machine (Figure 1).
WHISPERTEST uses pymobiledevice3 for low-level communica-
tions with test devices. While pymobiledevice3 provides a solid
foundation, WHISPERTEST significantly expands its functionality.
For example, while pymobiledevice3 exposes a perform_press
method to interact with accessible UI elements, the method only
works with apps built in debug mode, limiting its use for testing
arbitrary apps [40]. As mentioned in § 3.1, WHISPERTEST circum-
vents these constraints by relying on accessibility and voice-based
mechanisms that work reliably across real-world devices. Table 1
summarizes how WHISPERTEST compares to other iOS automation
tools across key dimensions, showing that it offers competitive
capabilities with minimal constraints and dependencies.

2.2 Voice Control

Apple’s Voice Control [41] is a built-in accessibility feature that
allows hands-free interaction with Apple devices through prede-
fined voice commands for navigation, control and dictation, among
others. Beyond this, it supports custom commands and integra-
tion with the Shortcuts app, enabling users to automate multistep
actions and simulate gestures via voice.

WHISPERTEST leverages these capabilities to enable flexible and
programmable automation. For apps lacking accessibility support—
particularly cartoonish or visually complex interfaces—WHISPERTEST
uses Voice Control’s overlay commands “Show Grid” which divides
the screen into numbered sections for precise tapping (see Figure 2).
These overlays allow the system to interact with arbitrary UI el-
ements, even when accessibility data is unavailable, broadening
WHISPERTEST’s compatibility across diverse app designs.

2.3 Related Work

Our library touches different domains such as mobile automa-
tion tooling, user-interface understanding, and mobile navigation
agency. In this section, we review prior works in these domains.

2.3.1 Studies using mobile automation. Several recent studies have
used mobile Ul automation to analyze privacy and security behav-
iors of mobile apps at scale. DiOS [42] is one of the earliest systems

CCS 25, October 13-17, 2025, Taipei, Taiwan

OmniParser | |
==

* Screenshots
o Accessibility ! '
» Syslogs @ ixcvenn@ ;
Screen recordings T L 8
PCAPs | Tmmmmmmmemmmeeees

Text-to-Speech :)

Voice Commands

QwWERT YU IOFP

ASDFGHIKL

Figure 1: Overview of the WHISPERTEST automation pipeline.
The controller machine optionally leverages LLMs and Om-
niParser to interpret UI content and issues voice commands
via text-to-speech. Screenshots, accessibility data, syslogs are
processed in real-time. Screen recordings and network traffic
are saved for processing. Experimental keyboard, mouse and
microphone emulation offers alternative input methods.

for dynamic privacy analysis of iOS apps, using Apple’s UlAutoma-
tion framework on jailbroken devices. The study achieved limited
code coverage and it was unable to handle login flows or other
complex user inputs.

Kollnig et al. [10] performed a large-scale automated privacy
analysis of iOS and Android apps, revealing widespread third-party
tracking and sharing of unique identifiers on both platforms. They
launched each app automatically on real jailbroken devices for net-
work traffic analysis and captured data flows to tracking domains.
However, they did not simulate any user interactions after app
launch, citing the lack of established tools for automating and navi-
gating arbitrary iOS app interfaces. This limitation likely caused the
analysis to miss behaviors triggered only through user engagement.

Xiao et al. [43] automatically interacted with iOS apps using their
tool LaLaine to assess whether declared App Store privacy labels
were accurate, by dynamically executing the apps and analyzing
whether they collected personal data inconsistent with their stated
disclosures. However, the system faced limitations; approximately
20% of the apps could not be analyzed because they failed to run on
jailbroken devices, and the automation framework sometimes failed
to fully traverse app interfaces that required complex user inputs
(e.g., login), a challenge we address using custom commands §4.2.

Koch et al. [4] conducted a large-scale analysis of dark patterns
in privacy consent dialogs in Android and iOS apps. Using Appium,
they identified consent dialogs via UI structure and keywords, then
interacted by accepting or rejecting consent. The study faced no-
table limitations: Appium was unstable, occasionally crashing or
failing to extract UI elements or screenshots, and on iOS, they were
limited to an outdated iOS version due to the lack of a working
jailbreak, leaving 9% of apps unanalyzed.

Mohamed et al. [15] analyzed Apple’s App Tracking Trans-
parency (ATT) prompts in iOS apps to assess their compliance and
detect misleading language. They ran apps on jailbroken devices
and interacted with the apps by dividing the screen into a 45-cell
grid and randomly tapping cells for 30 seconds to trigger ATT or
pre-permission dialogs. However, this straightforward method may

CCS 25, October 13-17, 2025, Taipei, Taiwan

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

Table 1: Comparison of WHISPERTEST with existing iOS automation tools. “All” refers to the ability to automate Native,
Hybrid, and Web apps. Tools such as go-ios and 1libimobiledevice are not included, as they offer similar device communication
capabilities to pymobiledevice3 but lack UI automation features. Supported Data: S = screenshots; P = PCAPs; L = syslogs; A =

accessibility; V = video; O = OCR; U = Ul tree; C = Crash reports.

Tool Srill)’;:ty App Types Supported Data n;;fl(; § :(;318232 Language
WHISPERTEST Yes All S,P,L,A,V,0O No No Python
Appium-XCUTITest [3] Yes All S,U,L A Yes No JS, Java, Python
EarlGrey [1] No Native, Hybrid C,S,P A Yes Yes Obj-C, Swift
idb [22] No Native C,L A Yes No Python
KIF [21] No Native A Yes Yes Obj-C
NoSmoke-iOS [33] Yes All (¢} Yes No JS
pymobiledevice3 [34] Yes All S,P,L, A No No Python

lead to unintended interactions and may not be able to handle more
complex UI flows.

Reyes et al. [16] developed a dynamic analysis framework to
evaluate COPPA compliance in Android children’s apps, using An-
droid’s UI/Application Exerciser Monkey to simulate user interac-
tions via pseudorandom input events. The study found widespread
potential COPPA violations, often caused by misconfigured third-
party SDKs. While the Monkey enabled scalable testing, its random
interaction approach might have missed more complex, context-
dependent app behaviors.

In another study focusing on Android apps for children, Zhao
et al. [11] presented a framework to detect inappropriate ads. Its
core component explores apps and interacts with in-app ads by
leveraging Android Accessibility Services [44] to build a view tree
and identify ad views based on their runtime class.

Seiden et al. [5] proposed a framework named AppTap for dynam-
ically analyzing iOS apps by running . ipa files on Apple Silicon
Macs, avoiding the need for jailbreaking. They analyzed how apps
interact with system APIs and handle sensitive data during runtime.
However, the approach is limited to macOS and suffered from a
30% app installation failure rate.

Tang et al. [7] developed a method to download and decrypt
i0S app binaries, which they then analyze for vulnerable network
services. They install, launch, and uninstall each iOS app using
ideviceinstaller ([45]). However, their method relies on jailbroken
devices and invoking an interface of the iTunes .dll files—a fragile
approach, as minor changes by Apple can break compatibility.

2.3.2 Agent-Based Mobile Navigation. To improve mobile UI au-
tomation, prior work has explored processing user interfaces using
screen pixels alone or in combination with view hierarchies, OCR,
and metadata.[46-48]. OmniParser [49], which WHISPERTEST uses
under the hood, combines icon detection and functional description
models to convert Ul screenshots into structured data. Li et al. [50]
trained models to generate natural language descriptions for UI
elements following a similar multimodal approach. Zhang et al.
contributed Ferret-UL, an LMM developed to perform UI screen
referring and grounding tasks. Yang et al. [51] introduced a visual
prompting technique called Set-of-Mark to improve grounding in
LMMs such as GPT-4V.

More recently, research is advancing from generating structured
representations for mobile UI to using them as inputs for LLMs and
Large Multimodal Models (LMMs) to generate entire interaction
sequences [52-58]. For instance, Zhang et al. introduced AppAgent
[59, 60], a multimodal framework combining structured ground-
ing, reinforcement learning, and multimodal models for Android
app navigation. AppAgent trains through exploration and human
demonstrations, processing screenshots and XML UI data to select
actions such as tap, swipe and text input.

Wen et al. [61] proposed AutoDroid, augmenting LLMs with
memories of simulated app tasks and retrieving relevant past inter-
actions by embedding task descriptions. Similarly, Wang et al. [62]
proposed Mobile-Agent, which interprets screenshots, text, and
icons via LLMs, and uses multiple agents to automate Android apps.
Hong et al. [63] introduced CogAgent, which is a visual language
model designed to enhance the understanding and navigation of
both computer and smartphone GUIs.

2.3.3 Differences from the Related Work. While WHISPERTEST lever-
ages LLMs for navigation, it does not aim to outperform existing
models or benchmark their capabilities. Instead, our analyses serve
to demonstrate the WHISPERTEST ’s applicability, and its modular
design allows integration with other systems for broader use cases.
Lastly, while much prior work focuses on Android due to its open-
ness, iOS remains underexplored—particularly in sensitive domains
such as children’s apps. To the best of our knowledge, no prior study
analyzes third-party tracking and advertising specifically in iOS
apps aimed at children. Similar efforts exist for Android [11, 16, 64]
and the web [65], but not for Apple’s ecosystem. WHISPERTEST
helps bridge this gap and also enables new applications beyond
security and privacy, which we outline in the following (§4.5).

Most prior studies rely on jailbroken iOS devices, limiting com-
patibility with recent OS versions and causing high app failure
rates—up to 20% in some studies. In addition, several prior work
using dynamic analysis have adopted naive Ul interaction methods
such as random tapping on the screen or not interacting with apps
at all, limiting the effectiveness of dynamic analysis. Our study
shows that WHISPERTEST can enable performing similar dynamic
analysis research on a jailbreak-free setup.

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

3 WHISPERTEST: Design and Implementation

Developing automation tools for iOS is challenging due to its closed
ecosystem and undocumented protocols such as lockdownd and
RemoteXPC [66]. To simplify these complexities, WHISPERTEST
leverages pymobiledevice3 to abstract low-level communications,
focusing instead on offering a reliable, lightweight interaction API
similar to Selenium WebDriver.

WHISPERTEST operates without requiring app source code, jail-
breaking, or macOS, enhancing its compatibility across platforms.
Instead, our library relies on accessibility features that are guar-
anteed to remain available, ensuring long-term stability. Designed
with extensibility in mind, WHISPERTEST is adaptable to a wide
range of use cases.

3.1 Core Components

3.1.1 Controller Machine. As shown in Figure 1, WHISPERTEST
runs on a controller machine that installs, launches, and interacts
with 10S apps using voice commands or USB-based input emulation.
During execution, WHISPERTEST continuously collects screenshots,
screen recordings, syslogs, and network traffic—all of which are
stored in the controller machine.

3.1.2 Accessibility Features and Voice Control. WHISPERTEST lever-
ages the accessibility features of i0OS, combined with Voice Control
commands, to navigate through app interfaces and automate inter-
actions. To monitor accessibility events, our library uses a separate
thread to invoke the AccessibilityAudit service and receives the
list of supported screen elements. For elements such as toggles the
on/off state is included in the audits (Appendix A.9).

After scraping the accessibility details, WHISPERTEST can issue
commands to tap an item or type in some text using Voice Control.
The caller code that uses WHISPERTEST may choose the next action
based on the app context and analysis goals. For instance, if the
action is to tap an “Accept” button, WHISPERTEST will instruct the
controller PC to play a voice command (Tap accept) and confirm
that it is recognized by monitoring the device syslogs in real-time.

3.1.3 OCR and the Grid Method. Many apps lack accessibility la-
bels, making UI elements invisible to accessibility audits. To over-
come this, WHISPERTEST integrates OmniParser [49], a vision-based
tool that uses OCR and icon detection to identify interactable UI
components in screenshots. When accessibility data is unavailable,
WHISPERTEST uses OmniParser to detect element types and posi-
tions using visual cues. WHISPERTEST then applies a grid-based
method, dividing the screen into numbered rectangles (Figure 2)
and interacting with the rectangle that matches the coordinates of
the selected element.

3.1.4 Syslog Monitoring. In i0S, system logs (syslog) provide a
comprehensive record of system events, errors, and diagnostic in-
formation generated by both the operating system and applications.
Developers and forensic analysts utilize syslogs to monitor device
behavior and troubleshoot errors. WHISPERTEST runs a separate
thread to monitor syslogs, making them available through a queue.
Our library then uses these logs to confirm voice command recogni-
tion, detect foreground app changes, and identify crashes. Addition-
ally, WHISPERTEST allows for registering custom pattern matchers
to receive any relevant logs.

CCS 25, October 13-17, 2025, Taipei, Taiwan

oo opobeees

soonsessss

sososossss

Figure 2: Handling inaccessible apps using the grid method.

3.1.5 Text-to-Speech (TTS). WHISPERTEST issues voice commands
to the device using a local Text-to-Speech (TTS) module. To ensure
offline execution and low latency, we use a locally deployed model
from the Piper TTS project [67]. Piper converts text into speech
without requiring access to cloud services. The TTS component
supports multiple providers, and in this work, we used the English
(US) “Amy” voice in medium quality from Piper’s public voice li-
brary [68]. The controller generates audio files for each command,
stores them locally, and plays them back. If a command fails or
is not recognized, the system retries with configurable logic and
verifies execution through syslog feedback. To evaluate the effec-
tiveness of our TTS setup, we tested 40 commonly used commands
from categories such as basic navigation, overlays, and gestures,
achieving a recognition success rate of 99%. Additionally, we issued
commands “Tap 1” through “Tap 100” in a silent environment to as-
sess numerical recognition accuracy, obtaining a 98.6% recognition
rate over five repetitions.

For loud environments, we developed an alternative, but exper-
imental silent method to send the voice commands. Our method
simulates a user talking to a USB microphone to control their phone.
In particular, we used a Raspberry Pi (RPi) as a USB On-The-Go
peripheral that emulates a microphone. WHISPERTEST sends the
voice commands to RPi over HTTP, which then silently plays it to
the test device.

3.1.6 USB Mouse and Keyboard Emulation. In addition to emulat-
ing a USB microphone, we emulate a USB mouse and keyboard
connected to the iOS device using a Raspberry Pi. These emulated
devices can be controlled programmatically by WHISPERTEST, pro-
viding an alternative method to control the iOS device in scenarios
where voice input is undesirable or impractical. In this mode, the
coordinates of the screen element that should be tapped are con-
verted into mouse movements followed by a left click. Typed text
is converted into the individual keystrokes a user would have to
press in order to produce the string on a physical keyboard. Micro-
phone, keyboard, and mouse emulation occupy the iPhone’s only
lightning or USB-C port, which WHISPERTEST also uses to receive
syslogs, screenshots, and other data via pymobiledevice3. While
pymobiledevice3 supports connecting to devices over Wi-Fi, we
did not use this configuration in our study.

3.1.7 PCAP Captures. To analyze network traffic generated by iOS
applications, WHISPERTEST integrates a lightweight PCAP captur-
ing module based on pymobiledevice3. WHISPERTEST starts the
PCAP capture in a concurrent thread and accumulates the packets
in a buffer. Upon stopping the capture, packets are written to a

CCS 25, October 13-17, 2025, Taipei, Taiwan

standard PCAP file. While testing an app, WHISPERTEST supports
starting and stopping packet captures multiple times. This enables
a fine-grained analysis of the network activity triggered by specific
Ul interactions. While WHISPERTEST can capture network traffic, it
cannot decrypt encrypted traffic such as TLS.

3.1.8 Custom Commands and Shortcuts. To extend the capabilities
of WHIsPERTEST beyond basic navigation, we leverage two native
iOS features: Custom Commands and Shortcuts. iOS allows users to
create custom voice control commands by assigning spoken phrases
to specific gestures or sequences of actions. The commands can
consist of taps, swipes, or launching an app. Custom Commands
can be particularly effective for repetitive automation tasks, such as
scrolling through social media feeds. We successfully used custom
commands in our web measurement (§6) to scrape Safari’s Privacy
Reports and certificate details.

3.1.9 Screen Recording. WHISPERTEST uses i0S’s Voice Control
to initiate and stop screen recordings through custom commands,
allowing the capture of app interactions without requiring elevated
privileges. The video file is then copied to the controller machine.

3.2 Implementation and usage

To enable full functionality, users must install pymobiledevice3,
mount the appropriate Developer Disk Image (DDI), and install
Piper [67] and playsound [69] for generating and playing voice
commands. The core WhisperTestDevice class handles app man-
agement, screen capture (via accessibility and OCR), PCAP record-
ing, voice command execution, and screen recording (see Appen-
dix A.3 for a usage example). Enabling Developer Mode on the
test device is required for certain privileged operations, such as
launching apps, while other features—accessibility-based screen
scraping, PCAP capture, and syslog monitoring—function without
it. On iOS 17 and above, a trusted tunnel must be established with
sudo to interface with developer services.

4 Navigation Modules

Beyond the core components, we design specific navigation mod-
ules on top of our library.

4.1 Permission Dialog Handler

WHISPERTEST is capable of handling native iOS dialogs, such as
the Apple Tracking Transparency (ATT) prompt, Location Services
and Push Notifications. These dialogs are recognized through pre-
defined heuristic rules applied to accessibility data. WHISPERTEST
determines whether the dialog is present and selects the appropri-
ate response based on user preferences (e.g., “Allow;,” “Don’t Allow;,”
or “Ask App Not to Track”). Once the intended action is selected,
the command is issued through a voice command.

4.2 Apple Authenticator

We make use of Custom Commands to support specific tasks that
benefit from consistent Ul patterns or require repeated system-level
actions. One key use case is automating Apple account authenti-
cation for apps that require login. Since the Apple login interface
follows a relatively stable structure across apps, we define a custom
voice command that reliably navigates this flow.

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

4.3 App Installer

Downloading and installing apps are the necessary first steps for
large-scale iOS studies. Unlike Android, where apk files can be
obtained from public registries or research datasets, each iOS app
bundle is signed for the user’s Apple ID, making it impossible to
reuse apps downloaded by others. Tools such as IPATool allow for
downloading and installing iOS apps for a given Apple account,
but they rely on unofficial API endpoints. Case in point, during our
study, downloading apps via IPATool became temporarily impos-
sible for several months due to unannounced changes in Apple’s
infrastructure [37, 38]. To address this challenge, we developed a
WHISPERTEST feature to download and install apps in bulk. Our
method relies on a combination of voice commands and syslog
monitoring to automate app installation. WHISPERTEST starts with
opening a simple local web page with the App Store links of the
apps to be installed. Using voice commands, each link is tapped, and
WHISPERTEST then issues the command (Get, Re-download, or Up-
date) depending on the app’s prior installation status. Throughout
the process, WHISPERTEST monitors syslog entries to confirm each
step and ensure the app is successfully installed. In a preliminary
test on a sample of 100 apps, WHISPERTEST successfully installed 98
of them, showing that the method works reliably across different
common installation scenarios. The failures occurred because the
system did not successfully activate the App Store link, preventing
the installation process from starting. We are confident that the
failed cases can be addressed with better error handling.

4.4 Consent Handler

One of the key use cases supported by WHISPERTEST is the auto-
mated handling of consent dialogs, which are commonly presented
in mobile apps to comply with privacy regulations. WHISPERTEST
addresses this in two stages: first, detecting if the current screen
contains a consent prompt, and second, generating an interaction
strategy based on the desired consent mode—accept or reject.

To detect consent dialogs, WHISPERTEST extracts screen content
using accessibility audit data or OCR, and analyzes it with LLM.
Navigation instructions are dynamically added to the LLM prompt
if a consent dialog is detected. While accepting consent typically
requires a single action, rejecting it is more complex, often involv-
ing additional steps such as navigating to settings and confirming
choices—cases we address in our prompt design (see Appendix A.7
for details). Figure 3 illustrates how WHisPERTEST handles both
native and cookie dialogs when operating in reject mode.

4.5 Other Use Cases

WHisPERTEST’s ability to navigate apps while collecting a rich set
of data makes it suitable for a range of research applications. In
accessibility studies, it can evaluate whether apps expose proper
metadata and support assistive technologies. In security, it helps
detect TLS issues and audit local protocols, without needing to
decrypt traffic. For privacy, it offers scalable analysis of third-party
tracking and consent dialogs—an area underexplored on mobile.
Legal and policy researchers can use it to assess GDPR compliance,
detect dark patterns, and verify app store privacy claims.

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

Blockin' Color asks for your consent to

use your personal data to:

track your activity across
other companies' apps and

Figure 3: Example of handling native and consent dialog
in reject mode. (The tapping hand icons highlight where
interactions occur.)

5 Ads and tracking in children’s apps

Recent studies highlight frequent tracking and advertising prac-
tices on apps and websites targeted at children—often violating
privacy regulations [11, 16, 65, 70]. With mobile devices, particu-
larly iPhones, becoming highly popular among younger users [71].
There is growing concern regarding children’s exposure to harmful
ads and tracking. While such issues have been studied on Android
and the web, the i0OS ecosystem remains underexplored, likely due
to a lack of open-source automation tools. To fill this gap and
demonstrate WHISPERTEST’s capabilities, we analyze advertising
and tracking practices of 200 i0S apps targeted to children. In par-
ticular, we compare the apps under two conditions: when users
accept or reject tracking and personal data processing in GDPR
consent dialogs, as well as in Apple’s ATT prompts.

5.1 Navigation and Data Collection Pipeline

We developed an automated pipeline on top of WHISPERTEST that
enables systematic installation, launching, navigation, and monitor-
ing of mobile apps while collecting data related to advertising and
privacy/security practices. The pipeline follows a hybrid approach,
combining rule-based logic and LLM-driven decision-making. It in-
terprets screen content using accessibility data, OmniParser outputs,
or raw screenshots, and executes actions through voice commands.

The navigation process follows a tiered fallback strategy to max-
imize interaction success:

(1) Extract screen data using accessibility audits, which is a fast
and lightweight method.

(2) Ifrecognizable patterns (e.g., native iOS dialogs) are detected,
apply predefined rules to interact.

(3) Ifthe app is not accessibility-friendly or the first attempt fails,
extract textual and structural information using OmniParser
and apply rule-based heuristics on this output.

(4) If rule-based methods fail, prompt a vision-language model
to interpret the screen image and suggest the next action.

CCS °25, October 13-17, 2025, Taipei, Taiwan

(5) If the vision model returns an invalid command, fall back to
a text-based LLM to interpret the screen—first using accessi-
bility audit data, then OmniParser output.

(6) Once a valid interaction command is generated, execute it
via voice command.

To verify successful screen transitions, WHISPERTEST monitors
syslog messages to confirm that the device has recognized each
voice command. Further, WHISPERTEST compares screenshots taken
before and after each action using both visual and textual signals.
It extracts OCR data via OmniParser and applies Jaccard similarity
to detect content changes. Also, the average hash (aHash) from the
imagehash library [72] as a lightweight and reasonably tolerant
method is used to capture visual differences. A screen change is
detected when both textual and visual differences are observed.

Additionally, we monitor syslog events to detect critical behav-
iors—e.g., if the app moves to the background, navigation is halted.
The navigation phase continues for a fixed duration (200 seconds).
Throughout this process, WHISPERTEST collects screenshots, acces-
sibility audit data, OmniParser outputs, PCAP network traffic, and
screen recordings. The recorded data is later analyzed to detect the
presence of ads and third-party tracking.

Challenges in Navigating Children’s Apps. Applications,
and more specifically children’s apps, often feature minimal textual
content, relying heavily on vibrant, cartoonish imagery, making it
difficult for traditional text-based parsers to detect key icons and
buttons. For instance, we observed that critical icons, such as the
play button, were frequently undetected by OmniParser due to
their stylized, non-standard representations. Additional challenges
included parental verification mechanisms such as age checks and
mathematical puzzles, which must be completed to access settings,
in-app purchases, or locked content. These mechanisms are likely
implemented to restrict children’s access to specific content or fea-
tures and to ensure compliance with legal requirements such as
the Children’s Online Privacy Protection Act (COPPA) [73]. Sub-
scription prompts presented directly at launch often require users
to subscribe before proceeding. We dismissed these screens by lo-
cating subtle “Close” or “Continue with Limited Version” buttons
(see Figure 6 in Appendix A.6). Multi-step login and registration
flows further complicate interactions, as they demand an under-
standing of interaction sequences and not just individual actions
per screen. To overcome these challenges, we employed a mul-
timodal large language model instead of the simpler rule-based
or template-matching methods. We leveraged Qwen2.5-VL [74],
which is capable of localizing objects within images by generat-
ing bounding boxes or point coordinates. Also, we used a more
efficient text-only model (Qwen2.5-7B) to detect the presence of
consent dialogs and a larger model (Qwen2.5-14B) for text-based
LLM navigation (in Appendix A.7 we explain how we chose these
models). To address complex interaction flows, we developed a
comprehensive set of navigation guidelines covering the scenar-
ios observed in our pilot study. More importantly, we used the
Chain-of-Thought (CoT) [75] prompting strategy—outlined under
“Step-by-Step Reasoning” in Table 8—breaking down complex tasks
into smaller actions. Additionally, providing in-context examples
within the prompt [76] further enhanced the model’s ability to cope
with complex interfaces.

CCS 25, October 13-17, 2025, Taipei, Taiwan

5.2 App Selection and Installation

To systematically analyze ads and tracking in children’s apps on
i0S, in a manual pilot study, we manually installed and reviewed the
top 50 popular child-directed apps and found no visible ads during
execution. Since our goal is to analyze tracking and ads, we refined
our app selection strategy, in line with prior work [11], to ensure
our dataset included apps likely to display ads. Specifically, we used
the App Store Scraper [77], a Node.js module that extracts App
Store metadata. Since the scraper does not support direct category-
based searches for children’s apps, we identified suitable child-
related keywords using Google Keyword Planner [78], selecting
and manually verifying the ten most popular and relevant keywords.
The final list of keywords used for app discovery is provided in
Appendix A.1. To further refine our dataset, we leveraged privacy
metadata provided by the App Store Scraper to select apps that
listed Third-Party Advertising as a declared purpose for data
collection. We then applied additional filters to retain only those
with a content rating of 4+, at least 5000 reviews, and a last update
in or after 2023. After deduplication, this process yielded a final set
of 313 apps. To validate this approach, we randomly selected 20 apps
and confirmed that 13 contained ads during manual exploration.

To obtain the corresponding . ipa files, we used IPATool[79].
Out of the 313 apps, we successfully downloaded 217 .ipa files.
All apps were downloaded from the App Store, with the region set
to the Netherlands—the authors’ country of residence. Download
failures occurred for 94 apps: 21 apps were no longer available on
the App Store, and 73 could not be downloaded, because a change
introduced by Apple during our data collection broke IPATool’s
download functionality [38]. Note that these failures were due to
limitations of IPATool and not related to WHISPERTEST, as also
discussed in §4.3. While we considered using our app installer
functionality (§4.3) to resume downloads, we opted to limit our
experiment to random subset of 200 apps (of 217)—chosen as a
practical round figure—to keep a consistent download method for
all tested apps. Using IPATool also has the advantage of having
access to .1ipa files for static analysis. We used WHISPERTEST to
systematically explore these apps, capturing data related to tracking
and advertising and assessing the library’s ability to automate real-
world app interaction.

5.3 Experimental Setup

Figure 4 illustrates navigation in a cartoonish user interface of a
children’s app. Additional examples of different stages of WHis-
PERTEST’s navigation pipeline are provided in Appendix A.6.

We tested WHISPERTEST across multiple devices and environ-
ments to ensure robustness and cross-platform compatibility. This
included iPhone 13 devices (initially running iOS 17.5.1, later up-
dated to 18.3.2), an iPhone 13 Pro with iOS 18.3.2, and an iPhone
8 running iOS 16.7.11. The library was evaluated on both macOS
(MacBook Pro M1), Linux (Ubuntu 24.04.1 LTS), and Windows (11)
machines. Across these platforms and iOS device models, WHis-
PERTEST successfully passed all tests and produced consistent re-
sults, with no differences in performance or outcomes. For the
final data collection involving 200 apps, we used an iPhone 13 Pro
(i0S 18.3.2) paired with a Linux laptop. Server-side LLM and vision

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

model inference tasks were executed on Nvidia A100 GPUs (40GB
VRAM), totaling approximately 20 GPU hours.

5.4 Third-party Tracker Detection

In this study, we make use of WHISPERTEST s automation features
to detect the presence of third-party trackers in 200 iOS apps in
two different scenarios: When the “Accept” option is selected in
the consent dialog and when the “Reject” option is selected instead.
First, WHISPERTEST is used to autonomously navigate each app
while being instructed to either accept or reject any consent dialog
that appears during navigation. The library automatically captures
network traffic sent and received by the i0OS device in PCAP format
during this process. Although we are not able to decrypt encrypted
traffic using this method, it allows us to extract the hostnames the
apps try to connect to from DNS queries. However, DNS queries
may provide an incomplete view due to local caching and DNS over
HTTPS, the latter of which is sporadically used in our captures.
Since this would render our detection unreliable, we additionally
extract hostnames from the SNI (Server Name Indication) field of
the TLS handshakes. All connections in our captures were found
to support the SNI extension. We also do not find any Encrypted
Client Hello messages in the app traffic, which would hide the
actual SNI field from our analysis. We match the contacted host-
names to DuckDuckGo’s Tracker Radar dataset [80]. Certain rules
in the tracker dataset require a full request URL for tracker clas-
sification. This is because certain hostnames can be used to serve
both benign and tracking-related content. Having only access to
hostnames, we report tracker counts as a range: the minimums
include hostnames classified as trackers without ambiguity, while
the maximum also accounts for potential trackers inferred from
known tracking-related hostnames.

5.5 Measurement Results

Out of the 200 apps (§ 5.2), WHISPERTEST successfully installed,
launched, and navigated 195. Five apps failed to launch and crashed
immediately upon execution. We reproduced these failures and
examined the syslogs. The logs indicated that apps were terminated
immediately after launch, but no specific cause was recorded. When
we installed the same apps using WHISPERTEST ’s App Installer
(§4.3) or manually from the App Store, the apps launched and
ran normally without crashing. This indicates that failures are
likely due to IPATool, rather than WHisPERTEST. For each app,
the complete experimental cycle—including installation, launch,
navigation, and uninstallation—took approximately 329 seconds on
average. The navigation phase lasted up to 200 seconds per app and
was carried out using WHISPERTEST ’s tiered interaction pipeline,
which combines rule-based heuristics and LLM-driven decision-
making. To better understand LLM usage during navigation, we
logged all model queries issued throughout the data collection
process. For simplicity, we analyze the data from the accept mode
and observe a total of 823 LLM queries, averaging approximately
four queries per app. Of these, 517 were directed to the vision-
language model, with 336 resulting in successfully executed actions.
The text-based LLM was queried 215 times using OCR (OmniParser)
data as input, resulting in 147 successful interactions. When using
accessibility data as input, the LLM was queried 91 times, with 46

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

CCS °25, October 13-17, 2025, Taipei, Taiwan

X
How To Play‘

Tap to continue

Figure 4: Example of navigating a cartoonish children’s app interface, including interaction with a consent dialog and in-app

elements required to proceed within the game.

successful responses. These numbers reflect the fallback structure
of the navigation pipeline, where vision models are prioritized in
the cartoonish UI environments typical of children’s apps and text-
based models serve as fallbacks when visual parsing fails. In some
cases, the vision language model returned imprecise or misaligned
coordinates, leading to failed interactions, highlighting the need for
complementary text-based strategies to improve robustness. The
average inference time for LLM responses during navigation was
5.84 seconds. WHISPERTEST used the custom voice command to
authenticate with Apple (§4.2) in six apps where login prompts
appeared during navigation.

Consent notices. WHISPERTEST detected and interacted with
cookie consent dialogs in 89 of the 200 analyzed apps. Since many
consent notices use deceptive design patterns to steer users toward
accepting all cookies and data collection [81], we further analyzed
how choices were presented. Only eight apps provided equally
prominent accept and reject options on the first layer. In contrast,
73 lacked a visible reject option on the initial screen, and 67 offered
none even in the second layer or settings. Additionally, 30 apps
used color highlighting or other visual emphasis to draw attention
to the accept button.

Third party trackers. Table 2 summarizes the number of third-
party trackers observed under each consent mode. We find that
apps contact only slightly fewer trackers in reject mode, indicat-
ing that users cannot rely on declining consent to avoid tracking.
Table 3 further breaks down the trackers by category using Duck-
DuckGo’s Tracker Radar dataset [80], revealing that advertising
and analytics are the main purposes for tracking. When consent
is declined, the number of contacted trackers is reduced roughly
uniformly across all categories. Table 6 in the Appendix A.4 reveals
that Google—represented by domains such as doubleclick.net
(see Table 4), the most frequently observed tracker in our dataset—is
dominant in the iOS ecosystem, appearing in over 67% of apps in ac-
cept mode, more than twice as prevalent as the next most common
tracker, InMobi. We acknowledge that using contacted hostnames
to measure tracking may be a crude approach. Since WHISPERTEST

declines the ATT prompt in the reject mode, apps and trackers will
receive a zeroed-out Identifier for Advertisers (IDFA), but they may
still use signals such as IP address and device model, and they may
assign a unique ID to track users within apps.

Table 2: Tracker domain counts measured across iOS apps
while accepting and rejecting consent dialogs, respectively.
Each column reports a range: lower bounds include only con-
firmed tracker domains, while upper bounds include addi-
tional potential trackers inferred from encrypted hostnames.

Metric Accept Reject
Total distinct tracker domains 512-943 409 - 805
Apps with at least one tracker 152 - 171 140 - 168

Mean tracker domains per app 2.63-4.84 2.11-4.15
Median tracker domains per app 3-5 2-4

Ad Statistics. We analyzed ads that appeared in both consent
modes of children’s apps. Using the template matching technique
that we detail in Appendix A.2, we initially detected 634 candidate
ads. After manual review to remove false positives (approximately
15%) and repetitions (the same ad appearing across multiple screen-
shots of a single app), we identified 131 unique ads in 50 apps under
the accept mode, and 97 ads in 42 apps under the reject mode. The
detected ads included promotions for high-risk financial products
such as speculative trading platforms (e.g., Capital.com), which fall
under restricted categories according to Google’s ad policies and
should not be shown to children [82]. We also observed retail pro-
motions (e.g., Shein, Zalando) and interest-targeted content, such as
an ad stating “Singles Should Read This”, and a quiz-like ad asking
“How rare is your intelligence type?”. Notably, even at this small
scale, we found clear ad policy violations, highlighting the need for
broader analysis to assess inappropriate ads in child-directed iOS
apps. Examples of detected ads are provided in Appendix A.5.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 3: Most common categories of third-party trackers
across 200 iOS apps while accepting and rejecting consent
dialogs, respectively. The right-hand columns show the to-
tal number of trackers in each category. Note that a single
tracker may belong to multiple categories at once.

Category Accept Reject
Ad Motivated Tracking 131 120
Advertising 130 118
Analytics 94 83
Third-Party Analytics Marketing 70 60
Action Pixels 63 53
Audience Measurement 63 54
Ad Fraud 22 7
Embedded Content 5 5
Federated Login 2 0
Uncategorized 80 67

To assess the potential for missed ads, we manually reviewed
a random sample of 20 apps from those where no ads were de-
tected. We installed each app and interacted with it manually for
100 seconds. In seven out of 20 apps, we observed at least one ad,
typically after bypassing challenging flows such as parental gates,
age verification, or gameplay progression.

Unencrypted HTTP Connections. Analyzing the PCAPs cap-
tured during the analyses, we identified a total of 1,395 (unen-
crypted) HTTP requests, many of which did not redirect to HTTPS.
Out of the 200 selected apps, 54 were found to make at least one
HTTP request when accepting consent dialogs, compared to 44
when rejecting. While some were benign (e.g., 44 OCSP requests)
others transmitted unique identifiers and downloaded game scripts
and assets in plaintext. Notable examples include the following:

o A game made 860 separate HTTP requests to download game
assets.

e An app sent obfuscated messages as well as unobfuscated
tracking information to startech.1ltd. The sent informa-
tion included the device model and iOS version, country, and
a unique identifier.

e Another app sent unique device identifiers, i0S version, coun-
try, and app interaction details to api.adtrade. com.

o A game downloaded a .zip archive of game scripts written
in a Lisp dialect.

e Another game sent the user’s IDFA in plaintext over an
unencrypted WebSocket, along with device model and iOS
version. Ad content was also retrieved without obfuscation.

While some observed requests were likely for connectivity tests,
the use of HTTP to load scripts and send unique identifiers risks
identity leakage and content tampering. App assets and ads are espe-
cially vulnerable, since their display is predictable. These concerns
are not merely theoretical: threat actors have actively exploited un-
encrypted requests to redirect victims to malicious websites, deliver
exploits, and ultimately compromise their devices [83].

Effect of Lockdown Mode. Given our discovery that several
apps make insecure HTTP requests, we sought to understand
whether such behavior persists under stricter security settings.

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

In particular, we investigated Lockdown Mode [84], a feature in-
troduced by Apple to mitigate the risk of sophisticated targeted
attacks by significantly reducing the system’s attack surface. This
mode is intended for high-risk users and imposes a range of restric-
tions on app and browser behavior. Our focus was specifically on
identifying insecure HT TP requests made by apps, traffic that is
unencrypted and potentially vulnerable to interception and tamper-
ing. Surprisingly, we found that all three tested apps continued to
make unencrypted HTTP (non-HTTPS) requests, even under Lock-
down Mode. We reported this finding to Apple and recommended
disabling insecure HTTP requests in Lockdown Mode, since such
requests have previously been exploited to infect victims’ phones
with spyware [85].

Table 4: Most common tracker domains observed under both
consent modes. The right-hand columns show the number
of distinct apps where at least one tracker associated with
the respective domain was detected.

Tracker Domain Accept Reject

doubleclick.net 123 113
googlesyndication.com 78 79
inmobi.com 62 50
googletagservices.com 60 51
amazon-adsystem.com 38 30
appsflyer.com 33 30
amplitude.com 22 21
doubleverify.com 15

2mdn.net 12 2
smaato.net 9 5

6 Using WHISPERTEST for Web Measurements

Web automation libraries such as Selenium [6] and Playwright [86]
enabled numerous web security and privacy research [87-89]. These
libraries also provided the foundation for web privacy measurement
tools such as OpenWPM [90]. On iOS, web content inspection and
browser automation can be performed using the driver object in
pymobiledevice3, which leverages iOS’ Weblnspector service [91].
However, Weblnspector can only inspect and automate the web con-
tent, not the browser’s chrome [92] interface, including menus and
toolbars. In this illustrative exercise, we show how WHISPERTEST,
powered with custom commands, can be used for web measure-
ments. Specifically, we scrape Safari’s Privacy Report [93] and the
Connection Security Details pages [94], which show the detected
trackers and TLS certificate details, respectively. We define custom
commands to open the two pages, and use accessibility audits to
scrape their contents. OCR or LLMs were not needed for this web
measurement. To avoid errors, custom commands were only issued
when Privacy Report and Connection Security Details pages were
available—we detect this by scraping Safari’s Page Menu.

Before the crawl, we enabled iPhone’s Lockdown mode [84],
which limits certain functionalities, including web fonts and We-
bRTC [95]. This limited exercise aims to identify if the Lockdown
mode causes widespread breakage, which may curtail its adoption.
We choose target websites from Hanley and Durumeric’s 2024 study

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

on detecting synthetic news articles [96]. They compile a list of
news websites from prior work, categorized as reliable (mainstream
news) or unreliable (misinformation, disinformation, propaganda).
In particular, we compare 50 reliable websites to 50 unreliable web-
sites regarding tracker prevalence and certificate authorities. Our
measurements are limited in scale, as the WebInspector service fre-
quently becomes unresponsive after visiting a few dozen websites—
a problem commonly reported by other users [30]. Since our pri-
mary goal is to showcase WHISPERTEST s capabilities, versatility,
and ease of use—rather than exhaustive measurements—we believe
a smaller-scale study is sufficient. Moreover, the observed hangs
can be addressed through improved error handling and recovery,
rather than fundamental limitations of WHISPERTEST itself. Finally,
opening websites is also possible through Shortcuts and custom
commands, both of which can be invoked by WHISPERTEST and do
not rely on the WebInspector service.

After loading a website, WHISPERTEST executes custom voice
commands to open Safari’s Privacy Report and the Connection
Security Details page. We scrape their text through accessibility
audits, capturing details about trackers and the website’s certificate.
Additionally, we collect the page source, page load time, document
title, and innerText— the latter being used to identify page load
errors. Screenshots of Safari’s Page Menu and the homepage provide
additional evidence (Figure 9 in Appendix A.8). The crawler does
not interact with consent dialogs; thus, our measurements capture
the tracking that occurs before user consent. In fact, during an
automated session, Safari does not allow interaction with the page
content, but we observed that certain voice commands (e.g., scroll
down) bypass that limitation. Crawls from a European IP in April
2025 produced 80 successful visits (40 reliable, 40 unreliable), after
excluding failures from unreachable (9) or region-locked (5) sites.

6.1 Results

Tracker Entities. Safari’s Privacy report lists the detected tracker
domains’ owner entities (or companies). Google was the top entity
in both website types with 78% prevalence on both (Table 5). No-
tably, advertising companies Adscore and MGID only appeared on
unreliable websites, albeit infrequently (5 and 3 websites, respec-
tively). In a recent study, Adscore was the most prevalent finger-
printer on the web [97]. Prior research on clickbait and deceptive ads
found that MGID displayed ads on misinformation websites [98].
Tracker Domains. We found that reliable websites contain on
average 9.4 tracker domains, as determined by Safari’s Privacy Re-
port, while unreliable ones had only 4.4, based on Safari’s Privacy
Report. The difference (p=0.002) may reflect differences in busi-
ness models, popularity, or advertisers avoiding misinformation
websites. For instance, doubleclick.net, Google’s domain associated
with advertising, was present on 70% of the reliable websites, but
only 25% of the unreliable websites. On the other hand, google-
analytics.com has a very similar prevalence on reliable and unreli-
able websites: 60% and 55%, respectively (Table 9, Appendix A.38).
Certificate Authorities. Combined, Google and Let’s Encrypt
issued 88% of all leaf certificates observed in our 80-website sample
(G: 38, LE: 32). Comparing across reliable and unreliable websites,
we find that Google’s WE authority is used on 64% of the unreliable
websites, but only 33% of the reliable websites. Reliable websites

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 5: Most prevalent tracking entities found in the web
measurement study on reliable and unreliable websites in
Lockdown mode. Based on 40 websites in each category.

Entity Num. Entity Num.
(Reliable sites) sites (Unreliable sites) sites

Google 31 Google 31
Cloudflare 12 Adscore 5
Criteo 10 OneSignal 5
Amazon.com 10 Facebook 4
PubMatic 9 Prospect One 4
Facebook 9 PayPal 3
ID5 8 MGID 3
The Trade Desk 8 Amazon.com 3
WarnerMedia 7 Twitter 3
Taboola 7 Intuit 2

used Let’s Encrypt more often than their unreliable counterparts
(47% vs 31%), which may be due to limited technical capabilities.
Breakage due to Lockdown Mode. We do not observe wide-
spread breakage in our limited sample. The only issue was broken
icons on 14 websites that identified by inspecting the homepage
screenshots of 80 websites. Manual investigation of the page ele-
ments revealed that breakages stem from font-awesome [99] and
similar libraries that use web fonts to render icons. Since Lockdown
mode disables web fonts [84], icons appear as an empty rectangle.
We visited the same websites on an iPhone and verified that the
icons appeared after disabling the Lockdown mode. The missing
icons do not pose a serious issue when accompanied by text. How-
ever, we find cases where icon-only menu designs may lead to
confusion or unintended clicks, since several menu items are repre-
sented by the same empty rectangles (Figure 10 in Appendix A.8).

7 Safety and Security

As with all automation libraries, WHISPERTEST can be used to per-
form undesired activities and may carry safety and security risks.
This section outlines key concerns and strategies to mitigate them.

Anti-debugging. While apps under test cannot directly detect
if Developer Mode or Voice Control is enabled [100], there may be
side channels to detect if Voice Control is enabled. When apps detect
they are tested, they may behave differently, leading to results that
are not representative of users’ experience at large.

Malicious Bots. WHISPERTEST can be used to perform fraudu-
lent activities such as fake interactions, sending spam comments,
and unauthorized data scraping. By relying on Voice Control, WHis-
PERTEST has an inherent friction that rate-limits excessive activity,
enabling scaling up of malicious activities. Each interaction takes
several seconds to be sent and executed, internally limiting WHIs-
PERTEST’s speed. Regardless, WHISPERTEST users are advised to
implement necessary safeguards such as sensible delays between
actions and maximum retry limits to avoid unintended outcomes.

Tested Apps as Adversaries. Automating arbitrary apps may
expose untrusted input. Malicious buttons or links could trigger
unwanted actions or capture the test persona’s credentials. Ac-
cessibility labels used by WHISPERTEST can also be manipulated

CCS 25, October 13-17, 2025, Taipei, Taiwan

to conceal attacks. For scenarios involving credentials or sensitive
data, mitigations include disabling certain Voice Control commands
or restricting them to specific apps. Detailed system logs from the
device can be used to verify iOS platform’s own dialogs. For in-
stance, App Store’s app installation dialog is indicated by a log
entry from “appstored(AppleMediaServices)...”. Similarly, the Sign
in with Apple dialog can be detected by logs similar to “<Notice>:
com.apple. AuthKitUlService: Foreground: true”. WHISPERTEST users
should be very specific when searching for expected strings in sys-
logs, to prevent against apps that may potentially inject arbitrary
strings into syslogs.

Prompt Hijacking. Since WHISPERTEST relies on voice com-
mands for app navigation, it is susceptible to prompt hijacking,
where an app intentionally misleads the automation system by
altering button labels or introducing carefully crafted Ul elements.
Similar injection attacks exist against Web UI automation systems
that may lead to personal identifiable information exfiltration [101].
Hidden voice commands can be mitigated by muting the device.
WHISPERTEST users may add a malicious prompt detection layer
before sending UI labels to the models for next action prediction.

Elevated Privileges. The pymobiledevice3 generally works
without root privileges. For high-risk actions such as app installa-
tion, however, it must be started with root in a separate terminal to
create a kernel virtual network device (TUN). While sudo carries
security risks, WHISPERTEST itself never runs with elevated priv-
ileges. An open feature request for pymobiledevice3 suggests a
sudo-less alternative for creating a trusted tunnel is possible [102].

Information Leaks. Using external language, vision, or OCR
models (e.g., OpenAl) may transfer sensitive on-screen data. To
mitigate this, we prefer local LLMs over proprietary API-based
models. WHISPERTEST is intended for test devices and simulated
personas, and users should be cautious when applying it to apps
with real personal data. We will also include clear safety and security

warnings on WHisPERTEST's website and source repository. 2.

8 Discussion

Analyzing Broader App Categories. Our experiments focused
on children’s apps, which often feature highly stylized, non-standard
Uls that challenge traditional Ul testing. To investigate WHISPERTEST s
applicability beyond children’s apps, we conducted a small-scale
analysis of non-children’s apps. We randomly selected 50 popu-
lar non-children’s apps from the App Store’s top 100 free apps in
the Netherlands, which included apps from categories such as so-
cial media and communication (e.g., Instagram, Signal, X), travel
and transportation (e.g., Airbnb, Waze, Maps), shopping (e.g., Ama-
zon, Temu), utilities (e.g., Outlook, Translate), entertainment (e.g.,
Spotify, Netflix), and education (e.g., Duolingo). WHISPERTEST suc-
cessfully installed, launched, and navigated all 50 apps without
error, based on the review of syslogs and screen captures. On av-
erage, it reached 5.29 unique screens and triggered connections to
29.48 distinct IP addresses per app. During testing, apps produced a

2A potential warning message could be the following: WHisPERTEST is an experimental
tool and must be used with extreme caution. Its use may lead to data theft, data loss,
or device compromise when used with untrusted apps or websites. When used with
LLMs WHISPERTEST may be vulnerable to prompt injection attacks, which can result in
unauthorized and harmful actions. WHISPERTEST must only be used on test devices with
simulated data. Use on devices with real user data and accounts is strictly discouraged
and may result in irreversible consequences.

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

median of 39.5 TCP/UDP flows and 1.48 MiB of network traffic, in-
dicating active execution. For 13 apps, WHISPERTEST used its Apple
Authenticator feature (§4.2) to log in. In five of those cases, the app
required filling additional forms, which could not be completed—
a known challenge for automated testing. Although customizing
prompts could have partly addressed the form completion issue,
we used our original prompts from §5 for consistency. This prelimi-
nary analysis suggests WHISPERTEST is promising for automating
and analyzing apps from broader (non-children) categories. Yet, we
acknowledge that our sample size is limited given the sheer scale
and diversity of i0S apps that exist in the wild.

Comparison with Prior Research. Section 2.1 and Table 1
compared available tools (e.g., Appium), and §2.3.1 contrasted our
work with prior research using mobile automation. Here, we add a
comparison to related studies, focusing on tested apps, coverage,
reliability, and other limitations or strengths. Prior work differs
in both the number of apps tested and the automation strategies
used. A 2024 study by Mohamed et al. [15] employed a random
click approach to trigger ATT alerts on 4,680 apps. Xiao et al. used
LaLaine [43] to analyze 6,332 apps using a depth-first search algo-
rithm with a maximum depth of five Ul views. DiOS [42] was used
to test 1,136 apps with three execution types, including a smart
strategy that keeps track of a state model graph of already executed
Ul paths. In contrast, WHISPERTEST ’s fallback-based interaction
pipeline we used in the study is designed for deeper, more realis-
tic exploration. On the other hand, WHISPERTEST should also be
viewed as a neutral automation library akin to web automation
libraries such as Selenium or Playwright. While we use a specific
pipeline for this study, different automation strategies can be built
on top of WHISPERTEST, from random clicking to depth- or breadth-
first search. We used WHISPERTEST to test 200 apps to analyze track-
ing and ads in children’s apps, whereas studies by Kollnig et al.[10],
Zhao et al.[11], and Binns (static analysis) et al. [64] tested 24,000,
25,000, and 959,426 apps, respectively. While our experiments are
limited in scale our core contribution lies in developing the WHis-
PERTEST. The accompanying experiments serve as an exploratory
analysis, designed to demonstrate WHISPERTEST’s potential and
robustness under challenging test conditions. A broader evaluation
across diverse application categories is beyond the scope of this
paper and is left for future work.

Regarding coverage, while WHISPERTEST does not support tradi-
tional code coverage analysis—a limitation we discuss in the next
section, we provide a practical comparison with prior work by ex-
amining the number of tracker domains (eTLD+1) detected during
app execution. In our study, the median tracker count was 3-5 in
accept mode and 2-4 in reject mode as reported in Table 2. Kollnig
et al. report a median of two tracker domains included in an app
on both Android and iOS, while Binns et al. report a median of
ten tracker domains. Note that the latter figures are derived from
static analysis, where APKs were downloaded and unpacked using
APKTool to identify host references, capturing all potential tracker
endpoints, not just those actually contacted during execution.

Among most tools, failure to analyze or execute some apps re-
mains a common issue: LaLaine could not analyze 1,200+ apps
(19.4%) due to jailbreak issues. The random click approach skipped
188 apps needing a newer iOS version, and reached target dialogs in
only 60.6% (2,836) of apps. AppTap [5] avoided device modification

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

by running iOS apps on macOS, but faced compatibility issues, exe-
cuting only 92 of 200 apps (46%). Zhao et al. [11] could only collect
ads from 8,971 of 25,000 apps, mainly due to app crashes or apps
requiring complex human interactions to display ads. WHISPERTEST
failed to launch 5 of 200 children’s apps due to IPAtool-related is-
sues, but succeeded using its own launcher. All 50 non-children’s
apps were launched and ran without error. Moreover, while prior
work [4] noted Appium’s instability, WHISPERTEST ran reliably for
over 20 hours without crashes and other fatal errors.

Our results should be seen as lower bounds, as ads, trackers, or
privacy issues may be missed in apps requiring complex interactions
such as gameplay, registration, or parental gates. Prior work found
ads in 36% of children’s (Android) apps labeled “Contains ads” [11],
while we observed 25% in Accept mode—a comparable portion
given the tested apps are from different platforms. This common
shortcoming of ad automation could be reduced by task-specific
scripts and more refined LLM prompts in future work.

Differences Across Usage Modes. WHISPERTEST supports mul-
tiple usage modes, including configurable consent handling (Ac-
cept/Reject) and testing under Apple’s Lockdown Mode. While
WHiSPERTEST could reliably reject consent dialogs despite decep-
tive, multi-step designs, this only reduced ads and trackers to a
limited extent. The number of observed ads dropped from 131 (me-
dian 3-5 trackers per app) in accept mode to 97 (median 2-4 trackers
per app) in reject mode.

We also assessed system-level protections by enabling Lockdown
Mode. Despite its stricter constraints, apps continued to transmit
unencrypted HT TP traffic, indicating that Lockdown Mode does
not fully mitigate insecure network behavior.

8.1 Limitations

A key limitation lies in WHISPERTEST s reliance on textual and
visual signals for screen understanding, which might be incomplete
or missing. Some apps lack accessibility support, and OmniParser
captures only visible on-screen content, overlooking off-screen ele-
ments and sometimes missing icons. Unlike Android, iOS does not
expose the full Ul tree on non-jailbroken devices, limiting deeper UI
analysis. While WHISPERTEST leverages syslog monitoring to con-
firm voice command execution or detect backgrounding, visibility
of the app’s internal state remains constrained. As a result, WHIs-
PERTEST cannot perform traditional coverage analysis or reliably
measure navigation depth. Instead, it uses a heuristic method that
compares on-screen text and visual similarity between consecutive
screenshots to infer screen transitions. While this offers a practi-
cal, non-privileged solution, it has inherent limitations: minor UL
animations may trigger false positives, while subtle or non-visual
transitions may go undetected. Future work could explore richer
use of syslog data to improve state detection.

WHISPERTEST relies on voice commands, which may be missed or
misinterpreted in noisy environments. To mitigate this, we can em-
ulate a USB microphone for direct audio injection (§ 3.1.6), though
this was not used in our study.

WHISPERTEST can capture network traffic but cannot decrypt
HTTPS payloads. While this limits access to full request and re-
sponse content; metadata such as queried domains, connection
timing, and SNI fields still provide valuable signals for privacy and

CCS 25, October 13-17, 2025, Taipei, Taiwan

security analysis. Moreover, captures contain local communication
protocols such as ARP and mDNS, enabling studies into the secu-
rity of such protocols [103]. These protocols could not be captured
using a VPN or proxy. Importantly, all measurements are conducted
on non-jailbroken devices, which reflects a realistic user setup and
avoids side effects introduced by jailbreak-based tools. However,
WHiSPERTEST is compatible with jailbroken devices as well.

As described in §5.1, we designed a layered strategy to navi-
gate within children’s apps to surface ads and third-party trackers.
However, as our primary focus is demonstrating the broad appli-
cability of WHISPERTEST, we did not exhaustively evaluate our
navigation performance using standard mobile navigation bench-
marks [104, 105]. Similarly, while we considered comparing WHis-
PERTEST to existing alternatives in a representative benchmark, the
lack of cross-platform alternative prevented meaningful evaluation.

Our app analysis and web measurement were limited to 250
apps and 100 websites, respectively. While the sample size limits
generalization, it demonstrates WHISPERTEST s capabilities and its
potential in larger-scale privacy and security studies. The limited
scale partly stems from the inherent slowness of using voice com-
mands—a key safety feature limiting misuse (§7). In addition, we
found the WeblInspector to be less reliable than the rest of the py-
mobiledevice3 library, which constrained the extent of our web
measurement. However, these issues can be mitigated by careful
monitoring and recovery, which we left out of scope.

Finally, our app selection relied on Apple’s 4+ age rating and
App Store privacy labels indicating third-party advertising. While
practical, this may have included general-purpose apps or excluded
others due to incomplete disclosures. We adopted this strategy after
finding no ads in a pilot test of the top 50 ranked apps. Although
this filtering may bias the sample toward ad-based monetization,
it aligns with prior work [11]. We acknowledge this trade-off and
that our findings may not generalize to all children’s apps.

9 Conclusion

We presented WHISPERTEST, a new cross-platform, extensible, open-
source library that enables iOS UI automation without jailbreak-
ing. WHISPERTEST integrates voice commands with low-level sys-
tem monitoring through syslogs and PCAP captures, and can be
extended with different automated navigation approaches such
as rule-based methods, template matching, and multimodal LLM-
based methods to handle complex workflows. To validate WHis-
PERTEST’s modularity and versatility, we performed various case
studies, including an analysis of tracking and ads in apps targeted
to children using multimodal LLM-guided automation. Our findings
show that declining GDPR consent dialogs have a limited effect on
tracking, and the use of unencrypted connections still persists at a
non-negligible scale. Through a small-scale web privacy measure-
ment exercise, we find differences in third parties used on main-
stream and disinformation websites. Future work could integrate
alternative GUI agent approaches to enhance coverage and apply
WHISPERTEST across diverse research domains that can benefit
from open, cross-platform and extensible mobile automation.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Acknowledgments

We would like to thank our reviewers for their valuable inputs
to improve our paper. Gunes Acar is supported by a Netherlands
Organisation for Scientific Research (NWO) Vidi grant. This work
has also been partially supported by the Government of Canada’s
New Frontiers in Research Fund (NFRF), NFRFE-2019-00806.

References
[1] Google. EarlGrey: iOS UI Automation Test Framework. https://github.com/
google/EarlGrey, 2024. Accessed: April 1, 2025.
[2] Apple Inc. XCUIAutomation | Apple Developer Documentation. https:

(3]

[11

[12

[13

[14

oy
&

[16

(17

[18

[19

™
=

[21

[22

[23

[24

//developer.apple.com/documentation/xcuiautomation, April 2025. [Online;
accessed 13-Apr-2025].

Appium Contributors. Appium XCUITest Driver Documentation. https://
appium.github.io/appium- xcuitest-driver/latest/, 2024. Accessed: 2025-04-02.
Simon Koch, Benjamin Altpeter, and Martin Johns. The {OK} is not enough:
A large scale study of consent dialogs in smartphone applications. In Procs. of
USENIX Security Symposium, 2023.

Steven Seiden, Andrew M Webb, and Ibrahim Baggili. Tapping. ipas: An auto-
mated analysis of iphone applications using apple silicon macs. Forensic Science
International: Digital Investigation, 52:301871, 2025.

Selenium. https://www.selenium.dev, April 2025. [Online; accessed 12. Apr.
2025].

Zhushou Tang, Ke Tang, Minhui Xue, Yuan Tian, Sen Chen, Muhammad Ikram,
Tielei Wang, and Haojin Zhu. {iOS}, your {OS}, everybody’s {OS}: Vetting
and analyzing network services of {iOS} applications. In Procs. of the USENIX
Security Symposium, 2020.

Hashida Haidros Rahima Manzil et al. Dynamaldroid: Dynamic analysis-based
detection framework for android malware using machine learning techniques. In
International Conference on Knowledge Engineering and Communication Systems
(ICKES). IEEE, 2022.

Priyanka Bose, Dipanjan Das, Saastha Vasan, Sebastiano Mariani, Ilya Gr-
ishchenko, Andrea Continella, Antonio Bianchi, Christopher Kruegel, and Gio-
vanni Vigna. Columbus: Android app testing through systematic callback
exploration. In Procs. of the International Conference on Software Engineering
(ICSE), May 2023.

Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max Van Kleek, and Nigel
Shadbolt. Are iphones really better for privacy? a comparative study of ios and
android apps. Proceedings on Privacy Enhancing Technologies, (2):6-24, 2022.
Yanjie Zhao, Tianming Liu, Haoyu Wang, Yepang Liu, John Grundy, and Li Li.
Are mobile advertisements in compliance with app’s age group? In Procs. of the
ACM Web Conference, 2023.

Shunguo Yan and PG Ramachandran. The current status of accessibility in
mobile apps. ACM Transactions on Accessible Computing (TACCESS), 12(1):1-31,
2019.

Android Developers. Android Debug Bridge (adb). https://developer.android.
com/tools/adb, 2024. Accessed: 2025-03-29.

Appium Contributors. Appium documentation. https://appium.io/docs/en/
latest/, 2024. Accessed: 2025-03-29.

Reham Mohamed, Arjun Arunasalam, Habiba Farrukh, Jason Tong, Antonio
Bianchi, and Z Berkay Celik. { ATTention} please! an investigation of the app
tracking transparency permission. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 5017-5034, 2024.

Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas
Razaghpanah, Narseo Vallina-Rodriguez, Serge Egelman, et al. “won’t somebody
think of the children?” examining coppa compliance at scale. In The 18th Privacy
Enhancing Technologies Symposium (PETS 2018), 2018.

Ailton Santos Filho, Ricardo J Rodriguez, and Eduardo L Feitosa. Evasion
and countermeasures techniques to detect dynamic binary instrumentation
frameworks. Digital Threats: Research and Practice (DTRAP), 3(2):1-28, 2022.
Apktool | Apktool. https://apktool.org, April 2025. [Online; accessed 13-Apr-
2025].

SensePost. objection. https://github.com/sensepost/objection, April 2025. [On-
line; accessed 13-Apr-2025].

Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: detecting and mitigating
privacy leaks on ios devices using crowdsourcing. In Proceeding of the annual
international conference on Mobile systems, applications, and services, 2013.

KIF Contributors. Kif - keep it functional. https://github.com/kif-framework/KIF,
2024. Accessed: April 1, 2025.

Facebook. idb: ios development bridge. https://github.com/facebook/idb, 2025.
Accessed: March 30, 2025.

Xamarin. Calabash - automated ui acceptance testing for mobile apps. https:
//github.com/calabash/calabash-ios. Archived, last updated in 2017. Accessed:

April 2, 2025.
Sundos Mojahed, Réjean Drouin, and Lokman Sboui. Odace: An appium-based

testing automation platform for android mobile devices certification. In Procs.

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

[25]

[26]

[27

[28

[29

[30]

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

(41

[42

[43

[44

[45]

[46

[47

[48

[49

[50

[51

[52

[53

of IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), 2024.

Junmei Wang and Jihong Wu. Research on mobile application automation
testing technology based on appium. In 2019 International Conference on Virtual
Reality and Intelligent Systems (ICVRIS), pages 247-250, 2019.

Ashwaq A Alotaibi and Rizwan J Qureshi. Novel framework for automation
testing of mobile applications using appium. International Journal of Modern
Education and Computer Science, 9(2):34, 2017.

Gabriel Lovreto, Andre T. Endo, Paulo Nardi, and Vinicius H. S. Durelli. Au-
tomated tests for mobile games: An experience report. In 2018 17th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames), 2018.
Denis Vajak, Ratko Grbi¢, Mario Vranje§, and Dejan Stefanovi¢. Environment
for automated functional testing of mobile applications. In 2018 International
Conference on Smart Systems and Technologies (SST), 2018.

WebDriverAgent - Appium XCUITest Driver. https://appium.github.io/appium-
xcuitest-driver/4.16/wda- custom-server. [Online; accessed 13-Apr-2025].
appium-xcuitest-driver/docs/guides/troubleshooting.md ~ at master
appium/appium-xcuitest-driver. [Online; accessed 14. Apr. 2025].

i0S tests suddenly became noticeably slower - Issues/Bugs - Appium Discuss,
November 2021. [Online; accessed 14. Apr. 2025].

Raiyan Rahman Chowdhury, Syeda Sumbul Hossain, Yeasir Arafat, and
Bushrat Jahan Siddiqui. Configuring appium for ios applications and test au-
tomation in multiple devices. In Procs. of the 2020 Asia Service Sciences and
Software Engineering Conference, 2020.

Macaca Team. Nosmoke: Ui automation framework for mobile apps. https:
//github.com/macacajs/NoSmoke, 2021. Accessed: April 8, 2025.
pymobiledevice3. https://github.com/doronz88/pymobiledevice3, August 2024.
[Online; accessed 7. Aug. 2024].

Daniel Paulus. go-ios: Golang based ios interaction tools. https://github.com/
danielpaulus/go-ios, 2024. Accessed: April 8, 2025.

libimobiledevice Team. libimobiledevice: A cross-platform protocol library to
communicate with ios devices. https://libimobiledevice.org, 2024. Accessed:
April 8, 2025.

Majd Taby. ipatool issue #284. https://github.com/majd/ipatool/issues/284, 2024.
Accessed: Mar 16, 2025.

Majd Taby. ipatool issue #357. https://github.com/majd/ipatool/issues/357, 2024.
Accessed: Mar 25, 2025.

USB on the Go and Embedded Host | USB-IF. https://www.usb.org/usb-on-the-
go, April 2025. [Online; accessed 13-Apr-2025].

pymobiledevice3 developer accessibility —crash Issue #405
doronz88/pymobiledevice3. https://github.com/doronz88/pymobiledevice3/
issues/405#issuecomment-1465104729. [Online; accessed 13. Apr. 2025].
Apple Inc. Use voice control on your iphone, ipad, or ipod touch, 2024. Accessed:
April 9, 2025.

Andreas Kurtz, Andreas Weinlein, and Christoph Settgast. Dios: Dynamic
privacy analysis of ios applications. Technical report, 2014.

Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing Liao, and
Luyi Xing. Lalaine: Measuring and characterizing {Non-Compliance} of apple
privacy labels. In Procs. of the USENIX Security Symposium, 2023.

Android Developers. Accessibilityservice. https://developer.android.com/
reference/android/accessibilityservice/AccessibilityService, 2025.
libimobiledevice.org. ideviceinstaller. https://github.com/libimobiledevice/
ideviceinstaller, 2020. Accessed: March 28, 2025.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan
Zeng, Yuhan Che, Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu,
Yasheng Wang, Ruiming Tang, and Jianye Hao. Gui agents with foundation
models: A comprehensive survey, 2025.

Huawen Shen, Chang Liu, Gengluo Li, Xinlong Wang, Yu Zhou, Can Ma, and
Xiangyang Ji. Falcon-ui: Understanding gui before following user instructions,
2024.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor,
Vincent Etter, Victor Carbune, Jason Lin, Jindong Chen, and Abhanshu Sharma.
Screenai: A vision-language model for ui and infographics understanding, 2024.
Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for
pure vision based gui agent, 2024.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget
captioning: Generating natural language description for mobile user interface
elements, 2020.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao.
Set-of-mark prompting unleashes extraordinary visual grounding in gpt-4v,
2023.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang,
Minghua Ma, Guyue Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang,
and Qi Zhang. Large language model-brained gui agents: A survey, 2025.
Zichen Zhu, Hao Tang, Yansi Li, Dingye Liu, Hongshen Xu, Kunyao Lan,
Danyang Zhang, Yixuan Jiang, Hao Zhou, Chenrun Wang, Situo Zhang, Liang-
tai Sun, Yixiao Wang, Yuheng Sun, Lu Chen, and Kai Yu. Moba: Multifaceted

https://github.com/google/EarlGrey
https://github.com/google/EarlGrey
https://developer.apple.com/documentation/xcuiautomation
https://developer.apple.com/documentation/xcuiautomation
https://appium.github.io/appium-xcuitest-driver/latest/
https://appium.github.io/appium-xcuitest-driver/latest/
https://www.selenium.dev
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://appium.io/docs/en/latest/
https://appium.io/docs/en/latest/
https://apktool.org
https://github.com/sensepost/objection
https://github.com/kif-framework/KIF
https://github.com/facebook/idb
https://github.com/calabash/calabash-ios
https://github.com/calabash/calabash-ios
https://appium.github.io/appium-xcuitest-driver/4.16/wda-custom-server
https://appium.github.io/appium-xcuitest-driver/4.16/wda-custom-server
https://github.com/macacajs/NoSmoke
https://github.com/macacajs/NoSmoke
https://github.com/doronz88/pymobiledevice3
https://github.com/danielpaulus/go-ios
https://github.com/danielpaulus/go-ios
https://libimobiledevice.org
https://github.com/majd/ipatool/issues/284
https://github.com/majd/ipatool/issues/357
https://www.usb.org/usb-on-the-go
https://www.usb.org/usb-on-the-go
https://github.com/doronz88/pymobiledevice3/issues/405#issuecomment-1465104729
https://github.com/doronz88/pymobiledevice3/issues/405#issuecomment-1465104729
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://github.com/libimobiledevice/ideviceinstaller
https://github.com/libimobiledevice/ideviceinstaller

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

[54

[55

(56

[57

o
&,

[59

[60

1]

(62

o
&

[64

[65

=
20,

=
=

=
fla?

~
o)

[76]

=
)

(78

[79

(80

memory-enhanced adaptive planning for efficient mobile task automation, 2025.
Jiayi Zhang, Chuang Zhao, Yihan Zhao, Zhaoyang Yu, Ming He, and Jianping
Fan. Mobileexperts: A dynamic tool-enabled agent team in mobile devices, 2024.
Filippos Christianos, Georgios Papoudakis, Thomas Coste, Jianye Hao, Jun
Wang, and Kun Shao. Lightweight neural app control, 2025.

Songgqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, and
Wenhao Xu. Mobileflow: A multimodal llm for mobile gui agent, 2024.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao
Zhang, Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou,
Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jirgen Schmidhuber. Metagpt:
Meta programming for a multi-agent collaborative framework, 2024.
Xiaogiang Wang and Bang Liu. Oscar: Operating system control via state-aware
reasoning and re-planning, 2024.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang,
Bin Fu, and Gang Yu. Appagent: Multimodal agents as smartphone users, 2023.
Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and
Yunchao Wei. Appagent v2: Advanced agent for flexible mobile interactions,
2024.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li,
Shigi Jiang, Yunhao Liu, Yagin Zhang, and Yunxin Liu. Autodroid: Llm-powered
task automation in android. In Procs. of the 30th Annual International Conference
on Mobile Computing and Networking, ACM MobiCom ’24, New York, NY, USA,
2024. Association for Computing Machinery.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen,
Ji Zhang, Fei Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation
assistant with effective navigation via multi-agent collaboration, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui
Ji, Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent:
A visual language model for gui agents. In Procs. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2024.

Reuben Binns, Ulrik Lyngs, Max Van Kleek, Jun Zhao, Timothy Libert, and
Nigel Shadbolt. Third party tracking in the mobile ecosystem. In Procs. of the
10th ACM Conference on Web Science, WebSci "18, New York, NY, USA, 2018.
Association for Computing Machinery.

Zahra Moti, Asuman Senol, Hamid Bostani, Frederik Zuiderveen Borgesius,
Veelasha Moonsamy, Arunesh Mathur, and Gunes Acar. Targeted and trouble-
some: Tracking and advertising on children’s websites. In Procs. of the IEEE
Symposium on Security and Privacy (SP), 2024.

Doronz88. Understanding idevice protocol layers. https://github.com/doronz88/
pymobiledevice3/blob/master/misc/understanding_idevice_protocol_layers.
md. Accessed: March 26, 2025.

Rhasspy Contributors. Piper: A fast, local neural text to speech system. https:
//github.com/rhasspy/piper, 2023. Accessed: March 26, 2025.

Rhasspy Project. Piper TTS - en_US Amy. https://huggingface.co/rhasspy/piper-
voices/tree/v1.0.0/en/en_US/amy/medium, 2023. Accessed: 2025-03-28.

Bill Taylor. playsound: Pure python, cross platform, single function module
with no dependencies for playing sounds. https://pypi.org/project/playsound/,
2023. Accessed: 2025-04-13.

Jessica Pimienta, Jacco Brandt, Timme Bethe, Ralph Holz, Andrea Continella,
Lindsay Jibb, and Quinn Grundy. Mobile apps and children’s privacy: a traffic
analysis of data sharing practices among children’s mobile ios apps. Archives of
Disease in Childhood, 2023.

Piper Sandler Completes 46th Semi-Annual Generation Z Survey of 9,193
U.S. Teens | Piper Sandler. https://www.pipersandler.com/news/piper-sandler-
completes-46th-semi-annual- generation-z-survey-9193-us-teens, April 2025.
[Online; accessed 13. Apr. 2025].

Johannes Buchner. Imagehash: perceptual image hashing in python. https:
//github.com/JohannesBuchner/imagehash, 2013. Accessed: 2025-03-28.

FTC. Children’s Online Privacy Protection Rule (“COPPA"). https://www.ftc.
gov/node/60175, 2023. [Accessed 28 Feb. 2023].

Qwen Team. Qwen2.5-vl technical report, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems,
35:24824-24837, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

Facundo Olano. App Store Scraper. https://github.com/facundoolano/app-store-
scraper/tree/master. Accessed: March 24, 2025.

Google. Google Ads Keyword Planner. https://ads.google.com/home/tools/
keyword-planner/. Accessed: March 24, 2025.

Majd Taby. ipatool: Command-line tool for downloading ios apps from the app
store. https://github.com/majd/ipatool. Accessed: March 25, 2025.
DuckDuckGo. Duckduckgo tracker radar. https://github.com/duckduckgo/
tracker-radar, 2020.

[81]

[82
[83

[84

[85

[86

[87

[88

[89]

[90

[o1

[92
[93

[94

[95

[96

[97

[98

[99
[100

[101

[102

[103

[104

[105

[106

[107

[108

CCS 25, October 13-17, 2025, Taipei, Taiwan

Midas Nouwens, Ilaria Liccardi, Michael Veale, David Karger, and Lalana Kagal.
Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating
their Influence. In Procs. of the Conference on Human Factors in Computing
Systems (CHI), New York, NY, USA, 2020. ACM.

Google Ads. Financial products and services policy, 2024. Accessed: 2025-03-30.
PREDATOR IN THE WIRES: Ahmed Eltantawy Targeted with Predator Spyware
After Announcing Presidential Ambitions - The Citizen Lab, January 2024.
[Online; accessed 15. Apr. 2025].

About Lockdown Mode - Apple Support, April 2025. [Online; accessed 12. Apr.
2025].

PREDATOR IN THE WIRES: Ahmed Eltantawy Targeted with Predator Spyware
After Announcing Presidential Ambitions - The Citizen Lab, January 2024.
[Online; accessed 8. Sep. 2025].

Fast and reliable end-to-end testing for modern web apps | Playwright Python,
April 2025. [Online; accessed 12. Apr. 2025].

Martin Degeling, Christine Utz, Christopher Lentzsch, Henry Hosseini, Florian
Schaub, and Thorsten Holz. We value your privacy... now take some cookies:
Measuring the gdpr’s impact on web privacy. arXiv preprint arXiv:1808.05096,
2018.

Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. Fingerprinting in style: Detecting browser extensions via injected
style sheets. In Procs. of the USENIX Security Symposium, 2021.

Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, and Nick Nikiforakis. Web
runner 2049: Evaluating third-party anti-bot services. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 17th International Conference, DIMVA
2020, Lisbon, June 24-26, 2020, Proceedings 17, pages 135-159. Springer, 2020.
Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site
measurement and analysis. In Procs. of the 2016 ACM SIGSAC conference on
computer and communications security, 2016.

Inspecting iOS and iPadOS | Apple Developer Documentation, April 2025. [On-
line; accessed 12. Apr. 2025].

Content, not *Chrome’, April 2025. [Online; accessed 12. Apr. 2025].

Browse the web privately in Safari on iPhone - Apple Support, April 2025.
[Online; accessed 12. Apr. 2025].

Check whether a website is encrypted in Safari on iPhone, April 2025. [Online;
accessed 12. Apr. 2025].

Russell Graves. Analyzing iOS 16 Lockdown Mode: Browser Features and
Performance. Syonyk’s Project Blog, July 2022.

Hans WA Hanley and Zakir Durumeric. Machine-made media: Monitoring the
mobilization of machine-generated articles on misinformation and mainstream
news websites. In Procs. of the International AAAI Conference on Web and Social
Media, volume 18, 2024.

Asuman Senol, Alisha Ukani, Dylan Cutler, and Igor Bilogrevic. The double
edged sword: Identifying authentication pages and their fingerprinting behavior.
In Procs. of the ACM Web Conference 2024, WWW ’24, New York, NY, USA, 2024.
Association for Computing Machinery.

Eric Zeng, Tadayoshi Kohno, and Franziska Roesner. Bad news: Clickbait and
deceptive ads on news and misinformation websites. In Workshop on Technology
and Consumer Protection, pages 1-11, 2020.

How To Add Icons, February 2025. [Online; accessed 12. Apr. 2025].

Detect if user is running Voice Co... | Apple Developer Forums, April 2025.
[Online; accessed 15. Apr. 2025].

Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang, Jiawei Zhang, Chaowei
Xiao, Yuan Tian, Bo Li, and Huan Sun. Eia: Environmental injection attack on
generalist web agents for privacy leakage. arXiv preprint arXiv:2409.11295, 2024.
FEATURE REQUEST: Implementing Tunnel Creation without sudo - Issue #1260
- doronz88/pymobiledevice3, April 2025. [Online; accessed 12. Apr. 2025].
Aniketh Girish, Tianrui Hu, Vijay Prakash, Daniel J Dubois, Srdjan Matic,
Danny Yuxing Huang, Serge Egelman, Joel Reardon, Juan Tapiador, David
Choftnes, et al. In the room where it happens: Characterizing local commu-
nication and threats in smart homes. In Procs. of the 2023 ACM on Internet
Measurement Conference, 2023.

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li,
Jian Luan, Bin Wang, Rui Yan, and Shuo Shang. Mobile-bench: An evaluation
benchmark for llm-based mobile agents, 2024.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for
building data-driven design applications. In Procs. of the Annual ACM Symposium
on User Interface Software and Technology, UIST ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

OpenCV team. Opencv: Open source computer vision library. https://opencv.
org/, 2024. Version 4.11.0.

YourAdChoices.com | Welcome to YourAdChoices.com. https://youradchoices.
com, April 2025. [Online; accessed 13. Apr. 2025].

Mei Fang, GuangXue Yue, and Qingcang Yu. The study on an application of otsu
method in canny operator. In Proceedings. The 2009 International symposium on
information processing (ISIP 2009), page 109. Citeseer, 2009.

https://github.com/doronz88/pymobiledevice3/blob/master/misc/understanding_idevice_protocol_layers.md
https://github.com/doronz88/pymobiledevice3/blob/master/misc/understanding_idevice_protocol_layers.md
https://github.com/doronz88/pymobiledevice3/blob/master/misc/understanding_idevice_protocol_layers.md
https://github.com/rhasspy/piper
https://github.com/rhasspy/piper
https://huggingface.co/rhasspy/piper-voices/tree/v1.0.0/en/en_US/amy/medium
https://huggingface.co/rhasspy/piper-voices/tree/v1.0.0/en/en_US/amy/medium
https://pypi.org/project/playsound/
https://www.pipersandler.com/news/piper-sandler-completes-46th-semi-annual-generation-z-survey-9193-us-teens
https://www.pipersandler.com/news/piper-sandler-completes-46th-semi-annual-generation-z-survey-9193-us-teens
https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://www.ftc.gov/node/60175
https://www.ftc.gov/node/60175
https://github.com/facundoolano/app-store-scraper/tree/master
https://github.com/facundoolano/app-store-scraper/tree/master
https://ads.google.com/home/tools/keyword-planner/
https://ads.google.com/home/tools/keyword-planner/
https://github.com/majd/ipatool
https://github.com/duckduckgo/tracker-radar
https://github.com/duckduckgo/tracker-radar
https://opencv.org/
https://opencv.org/
https://youradchoices.com
https://youradchoices.com

CCS 25, October 13-17, 2025, Taipei, Taiwan Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

A Appendices Table 6: Most common third-party tracker entities found

. across studied children’s apps under both consent modes. The
A.1 Child-Related Keywords Used for App right-hand columns indicate the number of apps in which

Discovery each entity appeared.
To identify children’s apps using the App Store Scraper, we com-
piled a list of relevant keywords. The final set of keywords used in Entity Accept Reject

our study includes:

dress up games for girls, cartoons for kids, toddler games, abc Google. 135 117
games apps, childrens games, abc kids, painting games for kids, pre InMobi 62 >0
k games, childrens apps, educational apps, educational games for Amazon.com 38 31
kids, preschool games, math games for kids, kids apps, games for kids, Apps}"lyer 33 29
learning games for kids, learning games for kindergarten, and puzzles Amplitude 22 21
for kids. Smaato 9 6

PubMatic 7 5
A.2 The Template Matching for Ad Detection Microsoft 5 2
Advertisement Detection. We use OpenCV’s [106] template match- Entravision 4 2
Others 43 15

ing method to detect ads that appear within mobile apps. In the app
screenshots, we search for the AdChoices [107] icon and four other
ad transparency icons. We compile the list of icons by manually A.5 Examples of Detected Ads
reviewing screenshots obtained in a pilot study of 100 apps with
WHISPERTEST. We manually review app screenshots to detect ads
and extracted four more common transparency icons for use in
our detection pipeline. We use a sliding window style approach to
search for the icons in the app screenshots using OpenCV’s [106]
template matching method. At each location, the method compares
the template to the corresponding region in the input image of the
same size. Then, for each region, we apply the Normalized Cross-
Correlation Coefficient method to find the correlation between the
template and the current image region. The method computes a
value between -1 and 1, where -1 is the perfect inverse, 0 is no
correlation and 1 is a perfect match. We repeat this search for a
scaled version of the ad icons to prevent false negatives due to size
differences. We set the matching threshold to 0.5 to minimize false
negatives (missed ads), since we have a human in the loop to easily
remove false positives.

Before template matching, we convert both the template and
image to grayscale and apply Canny edge detection using OpenCV.
Following Fang et al. [108], we use Otsu’s method to determine
the upper threshold and set the lower threshold to half of that.
These preprocessing steps simplify the data by removing color
information and highlighting edges for more effective matching.

In Figure 5 we share two ads detected in children’s apps during our
automated testing.

Match Pairs of Numbers

Find pairs of numbers that are
either the same or add up to 10,
then tap them.

A.3 Example Usage of WHISPERTEST Singles Should ' § 2 Read This g

Listing 1 shows how WhisperTestDevice can be used to automate
key tasks such as app installation, screen recording, PCAP capture,
screen parsing, and issuing voice commands on an iOS device.

Figure 5: Examples of ads detected in children’s apps.
A.4 Most common third-party tracker entities

Table 6 lists the most common third-party tracking entities detected

across the studied children’s apps. Google was by far the most

prevalent, appearing in over two-thirds of the apps, followed by This section presents additional navigation examples from chil-

InMobi and Amazon; even under the reject mode. dren’s apps, showcasing how WHISPERTEST handles key interaction
challenges. The examples include dismissing subscription dialogs,
Figure 6, completing age verification flows guided by LLMs, Figure 7,
and navigating cartoonish interfaces with limited accessibility, Fig-
ure 8. Each figure highlights different steps WHISPERTEST takes
using its fallback-based interaction pipeline.

A.6 Navigation Examples

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

CCS ’25, October 13-17, 2025, Taipei, Taiwan

72,99 £/ Yoar *

T1L.9% £7 Menth

main game interface where an ad is visible.

Figure 6: Example of WHISPERTEST’s interaction with a subscription dialog shown at app launch. WHISPERTEST locates and
taps the subtle “X” icon to dismiss the subscription dialog; then taps the cartoonish play icon, and then “Collect” to access the

By playing KleptoCats provided by
HyporBoard, Inc., a company in the United

States, you agree to us processing your dats
in the United States and you acknowledge
that your data s required in arder for us ta
provido the game and porform our cantract
with you and will be ued a5 deierined in our

Figure 7: Example of WHISPERTEST automatically interacting with an age verification dialog, based on LLM guidance. It first
accepts the privacy policy, then enters “7” as the age following LLM’s response, since the LLM is prompted to imagine being a
7-year-old (Table 8). It finally taps the check mark to access the app content.

CCS *25, October 13-17, 2025, Taipei, Taiwan

Your privacy is very important for us!

We intend to provide transparency and user privacy.
Please, take 8 moment to learn how we process the
tained during the using t
application by reading our Privacy Polley and our
Tarms of Use. Terms of Use.

track your activity across
other companies’ apps and

By switching on
canfirm that you

&Y~

Your privacy Is very important for us!

We intend o provide transparency and user privacy.
Please, take a moment to learn how we process the
data that can be obtained during the using the
application by reading our Privacy Policy and our

By switching on the switchar at laft you
confirm that you read, understoed and
agreed with the Privacy Policy and Terms of

Use and your age Is over thirteen.

i

Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

Thanks for downloading Thanks For downloading

ROLL THE FOIL

O

Figure 8: Example of WHISPERTEST navigating a children’s app: it taps “Ask App Not to Track”, toggles the terms of service
button, taps Play, and interacts with the correct element to start the game.

A.7 LLM Prompts for Navigation and Consent
Detection

This section outlines the prompts used by WHISPERTEST to guide
navigation and consent detection during app interaction. First, a
dedicated consent detection prompt, displayed in Table 7 is issued
to determine whether the current screen contains a privacy or
cookie consent dialog. If such a dialog is detected, corresponding
consent-handling instructions (e.g., accept or reject) are dynami-
cally appended to the navigation prompt. The navigation prompt,
shown in Table 8 includes detailed guidelines for tasks like handling
subscription offers, completing verification steps, etc. It also speci-
fies the expected JSON output format and a step-by-step reasoning
procedure.

Model Selection Pilot Study. To detect consent dialogs (§ 4.4),
we used Qwen2.5-7B. Although many open-source models can
be used for this task, a small evaluation on 100 samples showed
Qwen2.5-7B achieving 98% accuracy. Once a consent screen is de-
tected, Qwen2.5-14B is used to generate an appropriate response
based on the specified consent mode (e.g., Accept or Reject). In a test
on 50 randomly selected apps, this approach successfully interacted
with 48 consent dialogs. During the pilot study, we also compared
models for handling age verification screens, subscription prompts,
and consent dialogs. Qwen2.5-14B proved optimal, demonstrating

strong instruction-following ability and faster execution times than
the alternatives.

Table 7: Prompt used to detect the presence of cookie consent
dialogs.

Prompt for Consent Detection:

You are an Al assistant specialized in detecting privacy/cookie
consent dialogs in mobile applications.

Your task is to analyze the provided screen elements and deter-
mine if the screen contains a consent dialog.

Look for key indicators such as links to privacy policies, ac-
cept/reject buttons, or keywords such as GDPR, personal data,
privacy, advertising, etc.

If you detect that the screen is a consent dialog, output the JSON:
{"consent_dialog": "yes"}.

If there’s no mention of cookies or if it only includes terms of
service, output: {"consent_dialog": "no"}.

Ensure your response is valid JSON and contains no additional
text.

Screen elements: [Placeholder for actual screen el-
ements]

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 8: The prompt used for the LLM to generate navigation actions based on textual screen data. The image-based model uses
a different output format, which includes a bounding box field: "bbox_2d": [x1, y1, x2, y2].

System Prompt: You are an Al assistant specialized in navigating mobile applications designed for children. Your primary goal is
to simulate natural, human-like interactions by processing a text-based representation of the current screen and determining the
optimal next action to guide the user through the app.

User Prompt:

Objective: Analyze the text content of the current mobile screen and determine the single best next action that a real user would
intuitively take to navigate the app.

Guidelines:

(1) Single Best Action: Choose the one action that a real user would intuitively take next.

(2) Use Provided Data Only: Rely only on the visible screen elements and the user’s goal. Do not infer extra information.

(3) Track Action History: If the same action is repeated more than twice based on the “Action History”, try a different element.
(4) Action Formats: Tap [screen element] or Type [value]

(5) Typing Procedure: When inputting text to fill in a form, first tap the target field to focus it, then in the next step, type the desired
value.

(6) Identify Clickable Elements: Consider an element clickable if its text or description indicates interactivity. Look for actionable
cues (e.g., 'dismiss’, ’close’, 'start’, "play’) or phrases like ’a completed task or confirmation’ or ’a play button for a video game’ that
imply a clickable control. Make sure to scan the entire list of screen elements—even those at the very end—to capture all potential
actionable items.

(7) Data Source Note: The screen data may include both visible text and descriptions of icons (which may not have any text). Treat
icon descriptions as valid if they include clear actionable cues.

(8) Subscription/Premium: If prompted to subscribe or upgrade, your goal here is to get out of this subscription page as quickly as
possible. Prioritize elements that dismiss or bypass the offer window dialog and AVOID options that lead to subscriptions, free trials,
or payments such as ’start a free trial’, ‘cancel any time’, ‘restore purchase’, continue, try, etc.

(9) Verification Challenges: If a verification step (e.g., age or math) appears, first try to dismiss or close the pop-up or dialog. Exiting
unwanted screens quickly is preferable. Only complete the verification if it cannot be bypassed by tapping on the desired screen
element. To do so, for age verification, assume the user is 7.

If a consent dialog is detected, append the relevant consent-handling instructions.

- Consent & Agreement Handling (Reject): When a data processing consent dialog or screen appears, your goal always is to tap
on Reject or Decline button. You must avoid closing or exiting the consent dialog without rejection. If there is no explicit 'Reject’
button, first tap ’Manage options’ or "More info’ or similar options to adjust your choices. Then choose reject button or confirm
default choices by tapping on Confirm choices button or similar buttons. Remember, you are not allowed to proceed through the app
without rejecting the consent.

« Consent & Agreement Handling (Accept): When a data processing consent dialog or screen appears, your goal always is to tap
on Accept button. You must avoid closing or exiting the consent dialog without acceptance.

Examples:

[Placeholder for actual examples]

History of Actions:

Pay attention to the history of actions and the success of each action to track the progress and avoid stucking in a loop. Avoid
repeating actions that have already been tried multiple times and failed.

Action history: [Placeholder for actual history of actions]

Step-by-Step Reasoning;:
(1) Determine Page Type: Identify the page’s purpose from the screen text (e.g., login, subscription, age verification, consent, etc).

(2) Extract Clickable Elements: Identify and list all clickable elements based on guideline 7 and 8, while reviewing history of
actions.

CCS 25, October 13-17, 2025, Taipei, Taiwan Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

(3) Filter Extraneous Items: Remove any non-actionable or redundant elements to ensure all valid options are considered—even
those at the end of a long list.

(4) Compare Options: Evaluate the elements against the guidelines, focusing on bypassing unwanted processes and moving toward
the main page.

(5) Choose Best Action: Select the single, most intuitive action a user would take next (tap or type). If no appropriate action is
available, respond with NO OPTION AVAILABLE.

(6) Output JSON: Output the next action name and bounding box coordinates (x1, y1, x2, y2) in JSON format following the "EXAMPLE
OUTPUT FORMAT*

Always think step by step, and clearly delineate your reasoning for Steps 1, 2, 3, 4, 5, and 6.

Output Format:
{"action":"", "value": "", ("bbox_2d": [x1, y1, x2, y21)}
{"action":"", "screen_element":"", ("bbox_2d": [x1, y1, x2, y21)}

Your response should strictly adhere to the guidelines and process steps above. Navigate naturally and efficiently toward the app’s
main page, and continue until an advertisement appears.

Screen elements: [Placeholder for actual screen elements]

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation CCS 25, October 13-17, 2025, Taipei, Taiwan

A.8 Web Measurements

Table 9 shows the most prevalent tracking domains we found in

Table 9: Most prevalent tracking domains found in the web
measurement study on reliable and unreliable websites in
Lockdown mode. Based on 40 websites in each category.

the web measurement study on reliable and unreliable websites in
Lockdown mode.

Figure 10 shows the differences in web fonts between non-lockdown Entity Num. Entity Num.
mode and lockdown mode. We see certain web fonts rendered as (Reliable sites) sites (Unreliable sites) sites
empty rectangles due to lockdown mode. doubleclick.net 28 google.com 24

googletagmanager.com 26 google-analytics.com 22
google-analytics.com 24 googletagmanager.com 18
google.com 24 googlesyndication.com 11
googlesyndication.com 12 doubleclick.net 10
cloudflare.com 12 youtube.com 6
criteo.com 10 adsco.re 5
amazon-adsystem.com 10 onesignal.com 5
pubmatic.com 9 facebook.net 4
Figure 10: Menu items that use web fonts rendered as empty ids-sync.com 8 jsdelivret 4

rectangles due to iPhone’s Lockdown mode [84].

Figure 9 shows the Page Menu on the left, and the two scraped
pages on the right. The Privacy Report (middle) displays the track-
ing domains and entities detected by Safari. The Connection Secu-
rity Details page displays the certificate details.

CCS 25, October 13-17, 2025, Taipei, Taiwan Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

_ > i > i

Edit Page Menu Done < Back jezebel.com Connection Security Details Done

ACTION
T O\ DFILING

Privacy Report D) . .
33across.com) .Your connection with jezebel.com
© issecure
Hide Toolbar S
adnxs.com
Request Desktop Website =]
Print @ adsrvr.org
c ton's ity Detail 8 jezebel.com
onnection Security Details agkn.com o
TIC amazon-adsystem.com jezebel.com
Add to Favourites Ad WE1
bounceexchange.com WE1
Add Bookmark @ Tuesday, May 13, 2025 at 11:58:51pm
i Central European Summer Time
Add to Quick Note casalemedia.com P
Add to Reading List o0 cloudflare.com Details
Move to Tab Group Learn More
criteo.com
Pin Tab 3
demdex.net
TE SETTIN M
disqus.com
Request Desktop Website
Use Reader Automatically doubleclick.net
Lockdown Mode \ () google-analytics.com
Camera
google.com

Figure 9: Safari pages scraped in the web measurement. The green rectangle on the top left of the rightmost screenshot is an
artifact of the accessibility audit that we use to scrape the page contents.

WHISPERTEST: A Voice-Control-based Library for iOS Ul Automation

CCS 25, October 13-17, 2025, Taipei, Taiwan

from whisper_test.device import WhisperTestDevice

app_bundle_id = "com.example.test"
ipa_path = "path/to/ipa/file.ipa"
pcap_path = "path/to/capture.pcap"

device = WhisperTestDevice ()

device.install_app_via_ipa(ipa_path)
device.launch_app (app_bundle_id)

device.start_screen_recording()
device.start_pcap_capture(pcap_path)

scr_shot, __ = device.take_screenshots(app_bundle_id)
print("Getting screen content by accessibility...")
ally = device.get_screen_content_by_ally()
print("Getting screen content by OCR...")

ocr = device.get_screen_content_by_ocr (sshot)
the caller code can decide what to do here, given the screen contents

print("Issuing voice command to go home...")
device.say("Go home")

device.uninstall_app(app_bundle_id)
device.stop_pcap_capture ()
device.stop_screen_recording ()

Listing 1: Example usage of WhisperTestDevice.

CCS 25, October 13-17, 2025, Taipei, Taiwan Zahra Moti, Tom Janssen-Groesbeek, Steven Monteiro, Andrea Continella, and Gunes Acar

A.9 Example of Screen Interpretation via
Accessibility and OCR

Figure 11: Screenshot of an App Tracking Transparency (ATT) prompt shown in the app, used to
demonstrate how WHISPERTEST interprets screen content via accessibility and OCR.

Allow “DarkRiddle” to track
your activity across other
companies’ apps and
websites?

Pressing 'Allow' uses device info for
more relevant ad content

Accessibility Data:
L

['Allow ‘DarkRiddle’ to track your activity across

other companies’ apps and websites?'],

['Pressing "Allow" uses device info for more relevant

ad content'],

['Ask App Not to Track', Button],

['Allow', Button]
]

OmniParser OCR Output:

L

['0", 'text', 'Allow "DarkRiddle" to track',
'941', '239', '660', '60'],

['1', 'icon', 'Ask Not to Track App ',
'856"', '664', '821', '139'],

['2", 'icon', 'Allow ',
'856"', '798', '821', '136'],

['3", 'text', "your activity across other companies' apps
and websites? Pressing 'Allow' uses device info for
more relevant ad content ",
'857', '278', '815', '392']

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Mobile Automation Tools
	2.2 Voice Control
	2.3 Related Work

	3 WhisperTest: Design and Implementation
	3.1 Core Components
	3.2 Implementation and usage

	4 Navigation Modules
	4.1 Permission Dialog Handler
	4.2 Apple Authenticator
	4.3 App Installer
	4.4 Consent Handler
	4.5 Other Use Cases

	5 Ads and tracking in children’s apps
	5.1 Navigation and Data Collection Pipeline
	5.2 App Selection and Installation
	5.3 Experimental Setup
	5.4 Third-party Tracker Detection
	5.5 Measurement Results

	6 Using WhisperTest for Web Measurements
	6.1 Results

	7 Safety and Security
	8 Discussion
	8.1 Limitations

	9 Conclusion
	References
	A Appendices
	A.1 Child-Related Keywords Used for App Discovery
	A.2 The Template Matching for Ad Detection
	A.3 Example Usage of WhisperTest
	A.4 Most common third-party tracker entities
	A.5 Examples of Detected Ads
	A.6 Navigation Examples
	A.7 LLM Prompts for Navigation and Consent Detection
	A.8 Web Measurements
	A.9 Example of Screen Interpretation via Accessibility and OCR

