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Abstract—Websites commonly use third-party scripts for
purposes such as advertising, analytics and payment pro-
cessing. In recent years, several popular third-party scripts
fell victim to supply-chain attacks where users’ login creden-
tials and credit card details were stolen. These devastating
attacks sometimes remain hidden for several weeks until
they are discovered. In this paper, we present Formguard, a
continuous testing tool that detects web-based supply-chain
attacks in an automated manner. Formguard allows website
owners to record complex interactions such as logging in,
signing up or checking out a product on their websites.
These recordings can then be periodically replayed, while
monitoring the HTTP requests and WebSocket messages,
accesses to input fields, and information on the embedded
scripts. The periodic and automated testing allows for faster
detection of malicious supply-chain attacks and potential
compliance issues that are impossible to detect with non-
interactive security scanners. While Formguard specializes
in detecting digital skimming attacks, it can also perform
various privacy tests against different aspects of a website
including embedded scripts, HTTP headers and cookies. We
evaluate Formguard through two case studies. First, a long-
term robustness test on 75 websites shows that even complex
recordings remain replayable for several months, suggesting
minimal maintenance workload for website owners. Second,
we use Formguard’s crawl mode to study access to and
exfiltration from login and registration forms on 100,000
websites, revealing access to password fields on over 10K sites
by third-party scripts. Finally, we discuss the challenges of
automated testing for modern web forms, providing insights
that may benefit researchers and practitioners.

Index Terms—privacy, security, supply-chain attacks, data
exfiltration, testing

1. Introduction

The majority of websites today make use of third
party scripts to implement a variety of functions. These
may range from including advertisements to providing
payment forms for online shopping. As some of these
third party scripts are used by large numbers of websites,
they become an attractive target for attackers to perform
so called supply-chain attacks. In these attacks, malicious
actors inject their malicious code to a common third-
party script, for example, by compromising their server.
When a user visits a site that embeds the compromised

script, the malicious code could redirect the users to
unwanted sites or steal their credentials and credit card
details. A recent example of this is the polyfill.io attack,
where the polyfill.io domain was bought by a Chinese
company in February of 2024 [1]. In June of the same
year, it was warned that the company had changed the
script to injected malicious code on sites implementing
the cdn.polyfill.io scripts, redirecting users who visited
a site with the compromised script to unwanted other
sites. While the polyfill.io attack was quickly detected,
other supply-chain attacks on high-profile websites such as
British Airways have remained undetected for weeks [4].
The high impact these attacks can cause, alongside the
time it takes to notice them, indicates the need for an
automated detection tool which can be used by website
owners to test their site on a regular basis.

Prior research on exfiltrations of personal data, such as
passwords, email and credit card details, generally focus
on large scale web measurements [2], [26], [28]. As the
crawlers used for these studies need to work on a large
number and variety of sites, they prefer generic detection
methods to find and fill different form fields, either on the
landing page or some of the inner pages. However, pages,
forms or content that are served only after complex inter-
actions, such as booking a flight or opening an account,
may not be analyzed by such generalist crawlers. These
blindspots, however, are more likely to contain sensitive
form fields such as credit card details on a payment screen.

In this paper, we present Formguard, a tool to de-
tect web-based supply chain attacks through automated
tests. Formguard allows a user to record their interactions
on a webpage, such as navigating to and filling login
or payment forms, including in shadow DOM. These
interactions can then be replayed, allowing for regular,
repeated testing. The ability to record and replay interac-
tions ensures that a website owner is able to test desired
flows or form fields specific to their website. During the
replaying of the recorded interaction, HTTP requests and
WebSocket messages, HTMLInputElement API accesses
and information on embedded scripts, such as the content
hash and the stacktrace, are saved. The saved data can then
be analyzed to check for unexpected script behavior, data
exfiltrations via HTTP requests or the WebSocket API, as
well as for other privacy tests set up by the website owner.

In addition, Formguard can be used to perform large-
scale automated web crawls. In the crawl mode, Form-
guard uses pre-trained machine learning (ML) models to
identify login and registration pages, and it detects and



fills possible login forms. We use this crawl mode to
perform a crawl on 100,000 popular websites, covering
both home and inner pages. This large-scale exercise
ensures that Formguard can capture the data required to
identify credential exfiltrations from web forms.

In particular, we make the following contributions:

1) We develop Formguard, a continuous privacy
testing tool for website owners with a focus on
detecting digital skimming attacks.

2) We evaluate the long-term maintainability of For-
mguard’s recordings by recording and replaying
interactions on 75 websites. These recordings are
replayed over three months to assess the neces-
sary upkeep efforts.

3) We test Formguard’s robustness by crawling
100,000 websites where we attempt to detect
digital skimming attacks.

2. Related Work

Starov et al. reported on the first large-study of the
leakage of information filled into contact forms on the
100,000 most popular websites [28]. Their crawler filled
in contact forms found on the visited websites and checked
the recorded HTTP requests for leakage of the filled
values. They found that 6.1% of all submitted contact
forms leaked information to third parties. In addition,
Starov et al. developed Formlock, a browser extension
that warns and protect visitors against forms that leak
personal information. Unlike Formlock, Formguard can
be used for more general privacy tests and it is aimed at
website owners, allowing for automated testing for leaks
as a result of interactions with a website.

Senol et al. presented a study of the misuse of ac-
cess to online forms by online trackers [26]. From two
vantage points, they measured the email and password
collection before submission of online forms on the top
100,000 websites. They found that 1,844 websites in the
EU crawl and 2,950 websites in the US crawl exfiltrate
emails to tracker domains, without the consent of the
user. In addition they found that roughly 50 websites
leak users’ passwords to tracker domains before form
submission. The password leaks were largely fixed due
to their disclosures.

Acar et al. studied the data exfiltration by third-party
scripts directly embedded on web pages [2]. They found
the use of invasive practices by third-party scripts, such as
the insertion of invisible login forms onto a page, which
in turn trigger the login autofill of a browser. This allows
the third-party script to read out the auto-filled in email
address, sending its hashes to data broker or other third-
party domains. In addition, they found the leaks of email,
password, credit card and health data initiated by session
replay scripts, as they exfiltrate the whole Document Ob-
ject Model (DOM) to reconstruct users’ interaction with
the page.

Nikiforakis et al. investigated the inclusion of
JavaScript libraries on the top 10,000 Alexa sites and
developed a set of metrics to grade the maintenance
quality of the providers [22]. They show that some of
the top ranking sites include scripts from providers with a
low maintenance score. These providers could be potential

weak spots and leave the sites implementing them open to
attacks. In addition, they also describe four types of vul-
nerabilities related to the unsafe inclusion of JavaScript.

Van Acker et al. found that 51.3% of the Alexa top
100,000 domains contain a login page, with 70.2% of
those pages embed third-party resources that can access
password fields and are implicitly trusted [30]. Different
than our work, Van Acker et al. focus on quantifying
compromise risks under various adversary models such
as an active network attacker capable of intercepting and
decrypting the traffic to steal users’ credentials.

Bouhoula et al. presented the first large-scale auto-
mated analysis of cookie notice compliance, enabled by
ML models they developed [5]. They report that despite
explicit consent rejection, 65.4% of websites set Ana-
lytics/Advertising related cookies and likely continue to
process personal data.

While Formguard can be used to perform large scale
web measurements on form leaks (see Section 5) or third-
party inclusions, it is primarily designed as an automated
privacy and security testing tool for website owners.
Formguard allows recording of interactions specific to a
website, which can then be replayed periodically. Through
built-in network monitoring and JavaScript instrumenta-
tion, Formguard can detect security and privacy issues
including supply-chain attacks targeting sensitive form
fields.

Other privacy testing tools have been developed pre-
viously. Drakonakis et al. created ERNIE, a browser
extension which can be used to visualize six cookie-
based tracking techniques [31]. The authors discovered
at least one form of tracking on 62% out of 385 health
related websites before interacting with a consent dia-
log. Wesselkamp et al. developed a automated black-
box auditing framework to analyze web-apps for their
susceptibility to various cookie-hijacking attacks and their
security mechanisms [13]. Contrary to the previous tools,
Formguard is aimed at the detection of filled information
in network requests. However, it also captures accesses to
Document.cookie getters and setters, allowing owners
to define their own tests on these.

In a 2008 study Jung et al. designed Privacy Ora-
cle, a system capable of analyzing the network traffic
of installed desktop applications for leaks of user infor-
mation [19]. They discover leaks by linking changes in
user input to changes in the network traffic. Testing 26
applications, such as media players and instant messaging
client, Privacy Oracle discovered previously undisclosed
information leaks, including cases where identifying in-
formation is regularly sent in clear text. In contrast to
Privacy Oracle, Formguard is aimed at discovering leaks
on websites. Leaks are detected by attempting to find
encrypted and decrypted versions of the filled information
in the intercepted requests.

3. Formguard Record-Replay

To allow for repeated testing for detected leaks, For-
mguard offers the option to record and replay interactions
with a page. In contrast to automated navigation, this
allows Formguard to perform more difficult navigation
flows, such as a checkout procedure.
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Figure 1. High level overview of Formguard’s record and replay mode

Formguard uses Playwright [24] to navigate to a site,
record the interactions made by a user and later replay the
recorded interactions. Playwright is a Python library built
for reliable end-to-end testing and can be used as a general
purpose browser automation tool. It offers utilities to
capture the network traffic and supports Chrome Devtools
Protocol (CDP) [6], which offers low-level access to the
browser under test.

While replaying the previously recorded interactions,
Formguard monitors the network requests and access
to input elements by overwriting the getters of the
HTMLInputElement. The data collected during replay
can then be used to check for potential skimming attacks
or test various privacy features defined by the website
owner. For instance, the website owner may verify that
their website sends particular HTTP headers, sets specific
cookies and embeds particular scripts. They can check
the integrity of the parsed scripts for signs of possible
compromise thanks to the deep integration of Formguard
with the JavaScript engine via CDP. A high level overview
of the replay and recording steps can be found in Figure 1.

3.1. Record Mode

In recording mode, Formguard opens an empty
browser window and a Playwright Inspector window [12].
After starting the recording, all manual interactions such
as loading a page, clicking a link and filling form fields are
automatically converted to equivalent Python instructions
using Playwright’s codegen feature [25]. After all desired
interactions are made with the website, the automatically
generated code can be saved to a file for later replay. By
default, after a recording has been made, Formguard will
automatically switch to replay mode and replay the new
recording. This allows the user to immediately verify that
the new recording functions correctly.

3.2. Replay Mode

In order to replay a recording, the user invokes For-
mguard with the recording to be replayed. This opens a
fresh browser window and the specified file with recorded
code is replayed instruction-by-instruction. Network re-
quests made during a replay, which are used for detecting
exfiltrations from form fields, are saved into a HAR file,
a JSON-formatted file to store HTTP network requests.

Accesses to the cookies and input fields are captured and
stored to a JSON file by overwriting the getters and setters
of the HTMLInputElement and Document.cookie.
In addition, embedded script information is collected
by handling the CDP’s Debugger.scriptParsed
event [11]. This event is fired when the JavaScript engine
parses a script, including dynamically executed scripts
through eval or the Function() constructor [8]. The
information exposed in the scriptParsed event object
includes the script’s URL, stack trace, content hash and
embedding context. In addition to storing these details
about each parsed script, Formguard also stores times-
tamps for filling the form fields and the values entered
in each field, as well as the WebSocket messages made
during the visit. After each replay, the recorded data can
be compared against the baseline of the first replay to
check for unexpected leaks. For convenience, Formguard
also accepts a folder containing multiple recordings, au-
tomatically replaying them one after another.

Handling closed Shadow DOM. Websites may use
Shadow DOM to encapsulate custom elements from CSS
and JavaScript. While this isolation carries benefits for
the website, it may render it impossible to monitor them
for leaks with Formguard, especially for elements in the
Shadow DOM using the “closed” mode, as Playwright will
be unable to record and replay interactions on them [23].
In order to deal with this challenge, upon navigating to a
page, Formguard injects a script before the page scripts are
run. The injected script overwrites the attachShadow
method [3] used when attaching a shadow DOM to replace
its mode parameter so that it always attach the Shadow
DOM in “open” mode instead. This enables access to and
monitoring of the forms in Shadow DOM, both in record-
replay mode and in the crawls. We adopt this method from
a preliminary study by de Vries [10].

To make the replays more robust against website
dynamism and non-determinism, two extra features are
added to Formguard.

Handling optional elements. Each visit to a webpage
is influenced by a myriad of factors, including time,
vantage point or website dynamism. For instance, some
websites may display a popup dialog only in some visits
based on a fixed probability. If an element is displayed and
interacted (e.g., closed) during a recording and not during
the replay, the replay may fail due to the missing but ex-
pected dialog element. In order to handle this dynamism,
Formguard allows the user to mark certain instructions in
a recording as optional by appending #OPTIONAL to the
end of the line. If an optional instruction fails to execute
because the element is not found, the replay continues
normally, and subsequent instructions are executed with-
out marking the replay as failed.

Fuzzy frame matching. The second feature was
added to make Formguard robust in cases that in-
volve iframes with random id or name attributes.
An example of such frames is those provided by
Stripe [29] for online payment forms. These frames
have variable name attributes that follow the format
__privateStripeFrameXXXX, where the last four
characters are numbers that change in each visit. As
instructions generated by Playwright’s codegen will often
refer to frames using their name attribute, form elements
in these frames cannot be accessed. To mitigate this issue,



Formguard offers a fuzzy frame matching option. When
the option is enabled and an instruction containing a frame
locator fails, the other frames on the site will be checked to
see if they match the original frame. The features preferred
by Playwright’s codegen to identify elements inside the
frames (e.g. placeholder text, associated label), generally
do not change when the name of the frame changes. Thus,
Formguard uses the element locator to check if it can
be found in other frames on the same site. If such a
frame is found, its locator is saved, enabling subsequent
instructions to immediately use the correct new frame.

4. Long-term Robustness Test

4.1. Test Setup

To test the long-term durability of Formguard’s record-
ings, we used Formguard to record our manual interactions
on a total of 75 websites: 60 websites with login forms
and 15 with donation forms. The recordings for the 60
websites with login forms involved navigating from the
landing page to a login form, filling and submitting the
form. The recordings for the 15 sites with donation forms
involved navigating from the landing page to the dona-
tion form and filling and submitting it. These recordings
are then replayed after different durations to check what
percentage of the recordings still replay without failure.
We chose websites with login and donations because they
often involve sensitive user data such as passwords or
credit card details.

The 60 websites with login forms are sampled from
the top 100,000 websites as determined by the CrUX list
of October 2024 [9]. We took 20 sites from each of the
top 1,000, top 10,000 and top 100,000 sites, excluding the
previous range. Each site was manually visited to check
for the presence of a login form, and replaced by a new
site from the same popularity bin if no login form was
found. For these recordings, no instructions are marked
as optional and fuzzy frame matching is not enabled.

The 15 donation sites are sampled from a list of
3,081 sites that were predicted to have a donation form.
This list was inherited from a preliminary study by
Kokkelmans [20] and was constructed by searching for
intext:"Cardholder" AND inurl:"Donate"
on Google and other search engines. For these recordings,
no instructions were marked as optional, but fuzzy frame
matching was enabled because 11 out of the 15 sites had
parts of the donation form in an iframe with a name that
changed with each visit.

The recording and replaying of the 75 recordings were
performed from a European Union country from October
2024 to January 2025 using a residential connection. The
60 login recordings were replayed weekly for five weeks,
followed by a final replay after 13 weeks. The 15 dona-
tion recordings were run once after one week and once
after 14 weeks of their recording. Thus, for both website
categories, the time between the first and the last replay
was more than three months. The mismatch in the testing
frequencies was largely due to logistical constraints, which
we accept as a study limitation.
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Figure 2. Results from the robustness test of the replay function for login
pages
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Figure 3. Results from the robustness test of the replay function for
donation pages

4.2. Results

After five weeks, eight out of the 60 login recordings
have at least one instruction time out. After 13 weeks, the
number of failed sites have increased to 16/60 sites. For
the donation pages, 4/15 failed after one week, and 6/15
failed after 14 weeks. The results for both the login and
donation recordings can be seen in Figure 2 and Figure 3,
respectively. The 4/60 sites and 1/15 sites with a crawl
failure were caused by either a page not loading or a
problem in crawler logic which has since been resolved.

The timed-out instructions are due to two reasons. The
first reason involves the appearance of dialog windows or
screen blocking windows. If such windows load later than
expected, the instruction to dismiss them may time out and
potentially prevent subsequent steps from executing. The
second reason occurs due to the changing of page elements
after recording. If an element the recording interacts with
changes its recorded identifier, the replay will not find
that element. Important to note is that these results reflect
a worst-case scenario. None of the instructions interacting
with dialog windows in the test recordings are marked as
optional. Marking these as optional prevents the varying
load times of the windows causing timeouts on their own.

Overall, the results of our long-term tests suggest
that Formguard recordings can remain reliable over an
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Figure 4. High level overview of the automated crawler portion of
Formguard

extended periods of time. They do not require frequent
re-recordings and can be replayed for months without any
breakage — reducing the maintenance costs for website
owners.

5. Automated Web Measurements

In addition to recording and replaying interactions
on specific websites, Formguard can be used to perform
crawls to study privacy issues related to online forms at
scale. This mode also allows the testing of the data col-
lection methods used for record-replay on a larger number
of websites. In the automated crawl mode, Formguard
searches for and fills login or registration forms on mul-
tiple websites. When all form fields on a page are filled,
Formguard submits the form. Similar to record-replay
mode, HTTP requests, WebSocket messages and access to
input elements are monitored to detect potential leaks, and
closed shadow DOM’s are converted to open (Section 3.2).
Moreover, the pyvirtualdisplay library is used to
run the crawler in headful mode to avoid bot detection.
The interactions made on sites had not been previously
recorded. Instead the crawler used a generalized method
to detect the required elements. A high level overview of
the crawler can be seen in Figure 4.

5.1. Consent Dialogs

More websites started to show cookie consent ban-
ners after the introduction of GDPR in 2018 [17]. To
increase the likelihood of a leaking script being active,
the crawler accepts all forms of personal data processing
using a consent interaction module we build by porting
Priv-Accept from Selenium to Playwright [18] [21]. Priv-
Accept works by searching for HTML elements that can
contain a consent option, such as <button>, <a> and
<div> elements. It then checks the text content of these
elements against a list of keywords and phrases such as
“Accept” or “Agree & continue”.

5.2. Detecting Login Forms

Formguard’s mode and amount command line pa-
rameters let the user specify where the crawler searches for
email and password fields. In all modes, the crawler first
searches for these fields on the landing page. In addition, it
can also look for these fields on a number of inner pages.
For identifying if a page is a login or signup page, the
crawler uses a machine learning-based classifier adapted
from a 2024 study by Senol et al. [27]. The classifier

uses 88 distinct features, such as the inclusion of “login”
or “sign-up” terms in button texts or the presence of a
“Remember Me” checkbox element, to determine whether
or not the page is an authentication page.

When a page is determined to be a login or signup
page, the crawler searches the page and its frames for
password and email fields. For detecting password fields,
the crawler takes all input fields with the password type
(i.e. input[type=‘password’]). However, email
fields are not required to have the email type (i.e.
input[type=‘email’]). In addition to inputs with
the email type, the crawler also looks for text inputs
or inputs without a type that fulfill certain rules. These
rules are based on a pretrained email field classifier from
Mozilla Fathom [14]. Fathom is a supervised-learning
system for recognizing parts of web pages such as pop-
ups [16]. The usage of the email classifier model normally
requires the injection of a large script into the page’s
global context, causing name collisions and other errors in
certain cases. To prevent this injection, the crawler uses a
rule-based method that relies on the model’s features, but
not its weights. It checks all input fields for the identifying
features used in the ruleset of the model (e.g., associ-
ated label, placeholder text, name,... containing ‘mail’ or
‘email’ keywords). Instead of then adding weights to each
rule, the crawler assumes the input field to be an email
field if it fulfills at least one of the rules.

The simplified detection method is tested against the
original classifier on the top 1000 sites as determined by
the CrUX list [9] (as of July 2024). Of these, 302 sites
contained a login or registration form on its landing page
or one of its inner pages. This resulted in 654 total pages
containing a login or registration form. Table 1 shows the
results of the comparison between the two methods. Note
that the page amounts do not sum to the total number
of pages, as a single page can contain both an email field
with and an email field without the email type. On three
pages, the simplified model correctly detected more email
fields than the original classifier. On only one page did the
simplified missed an email field, due to Playwright being
unable to link the label to the corresponding input field.
Following these results, it was decided that the simplified
model was sufficiently accurate for the detection. The
147 sites where no email fields were detected by both
approaches had either a different identification field (e.g.
telephone number, username,...) (85 pages), were in a non-
roman alphabet (46 pages) or had a unique reason for not
being detected (16 pages).

5.3. Filling Forms

Once the crawler has found email and password fields
on a login or sign-up page, it will attempt to fill them. To
combat potential bot detection, the detected input fields
are filled by simulating a human-like typing behaviour.
The mouse moves over to and clicks the input field before
filling it character-by-character, with randomized intervals
and dwell times for each keypress and click. In addition,
the tab key is pressed after filling each field. Once all fields
are filled on a page, the crawler tries to submit the form
of the last field it filled. It does this by trying to access the
field’s form attribute and using the form.submit func-
tion. The timestamps for each filled field and submitted



TABLE 1. COMPARISON SIMPLIFIED MODEL AGAINST ORIGINAL
FATHOM CLASSIFIER

Category #Sites

Successfully visited 950
Login or registration forms detected 302

Category #Pages

Login or registration form detected 654
‘”input=[type=’email’]”‘ fields 283
Equal email detection between both models 229
Fewer email fields detected by simplified model 1
More email fields detected by simplified model 3
No email fields detected by both models 147

TABLE 2. CRAWL STATISTICS

Category Number of sites

Successfully visited 93,228
Website did not load 6,576
Time out 169
Crawl failure 27
Interacted with consent dialog 19,163
At least one field filled 28,107
Sites with successful submit 27,113
At least one email field filled 18,830
At least one password field filled 26,116

form are saved alongside the other collected information.
We comment on an unexpected side effect of using the
form.submit function in Section 6.2.

5.4. Leak Detection

In addition to being sent unencoded in a request, the
information filled on a web page can also be exfiltrated
encoded, hashed or obfuscated forms. This could be done
by third-parties to hide that they are collecting this infor-
mation. Thus, when searching for form field exfiltrations,
encodings have to be checked for these possibilities. For
this purpose, we used a modified version of Englehardt
et al.’s leak detector [15]. The leak detector works by
creating a precomputed pool that contains all possible
sets of searched information (e.g., filled password) by
iteratively applying the hashes and encodings to the values
filled on a page. The detector then checks the POST body,
URL, referrer header and cookies of each requests. This is
done by splitting it on potential separator characters, such
as “=” and applying possible decodings to the seperated
values. The repeated encodings and decodings are checked
against the precomputed pool until a depth of three layers
is reached.

6. Automated Web Measurement Results

6.1. Crawl Configuration

Using the crawler described in the previous section, we
crawl the top 100,000 websites from the CrUX list [9] of
October 2024. The crawl is run from the 14th to the 17th
of November from the EU (Frankfurt) on a cloud-based
DigitalOcean server equipped with 16 cores and 32GB

RAM. The filling of fields is limited to four input fields
per page, with a maximum of three filled pages per site.
The maximum crawl duration is limited to 300 seconds
per site with a maximum page load time of 30 seconds.
These crawl parameters are determined using a test crawl
on 1000 sites.

6.2. Results

The crawler visited 93,228 of the 100,000 sites suc-
cessfully, taking on average 21.9 seconds per successful
site, including load times. Of these sites, 18,830 had at
least one email field filled, while 26,116 had at least one
password field filled. The average visit time for sites with
at least one field filled is 45.72 seconds. Visits to 27 sites
were failed due to a crawler-related error. The high-level
statistics related to the crawl can be found in Table 2. The
crawler successfully submitted a form on 27,113 sites,
with an average of 1.6 forms submitted per site. This
shows that not all forms are successfully submitted on a
site, due to the used method not finding the form attribute
of the last filled element. An average of 3.0 fields are filled
on each site, with 1.2 being email fields and 1.8 being
password fields.The higher count of filled password fields
is likely because most login and signup forms include a
password field, whereas email fields may be replaced by
a username or phone number.

The collected data shows that a third-party script reads
the contents of an filled email or password field on 9,320
and 10,403 sites, respectively. The most prevalent script
domains that access these input fields are given in Table 3.
It is important to note that these accesses to the input
fields may have legitimate reasons. For example, the script
from the auth.fandom.com domain, while being a
third party, appears to be used for authentication. Further,
access to a field may not necessarily result in exfiltration.
For instance, session replay scripts such as Microsoft
Clarity (www.clarity.ms) may read the input fields
to count the number of characters and display them in
redacted form in the reconstructed videos of the session.

The results of detected email and password leaks are
not shared in this paper, as they do not represent users’
experiences due to an unexpected interaction between the
markup of the forms and how our crawler submits forms.
In the initial analysis, we found the number of detected
password leaks to third parties was unexpectedly high
(3,532 websites). Through manual review on a subset of
the detected leaks, we found that submitting forms by
invoking the form.submit method causes the filled in
email and password values to be reflected in the URL
on some websites, as if the form’s action was GET [7].
This causes further leaks in the Referer [sic.] header of
subsequent requests. However, these types of leaks would
not be present when a real user interacts with the page —
which we verified through manual tests. While this limi-
tation in our method reduced the usefulness of our crawl
data for detecting exfiltrations, it also provided a valuable
lesson on best practices in studying online forms at scale.
Furthermore, the crawl demonstrated Formguard’s ability
to navigate websites effectively, detect login and signup
pages at scale using its built-in ML models. Formguard
also successfully filled close to 84,500 email and password
fields on over 28,000 websites, interacting with diverse



TABLE 3. MOST PREVALENT SCRIPT DOMAINS BY NUMBER OF DISTINCT SITES FOR ACCESS TO PASSWORD AND EMAIL FIELDS. THESE
ACCESSES MAY NOT NECESSARILY INDICATE AN ATTEMPT TO EXFILTRATE THE DATA.

Domain: password access Number of sites Domain: email access Number of sites

www.gstatic.com 2,656 www.gstatic.com 1,905
www.clarity.ms 1,569 www.clarity.ms 1,454
www.googletagmanager.com 1,420 www.googletagmanager.com 1,418
ajax.googleapis.com 278 s.pinimg.com 454
auth.fandom.com 276 auth.fandom.com 270
static-ah.xhcdn.com 261 static-ah.xhcdn.com 261
static.xx.fbcdn.net 241 static.xx.fbcdn.net 246
mc.yandex.ru 208 ajax.googleapis.com 221
www.craigslist.org 156 cdn.shopify.com 209
t.contentsquare.net 140 mc.yandex.ru 168

and complex page designs while causing a failure on just
27 sites.

7. Discussion

In this paper we show that Formguard could be used
in periodic privacy tests to uncover personal information
leaks. Possible supply-chain attacks can be identified by
detecting deviations in the expected access and transmis-
sion patterns of personal data. Our limited record-replay
robustness tests show that Formguard can replay complex
interactions for several months for most websites. This
demonstrates that using Formguard for periodic tests will
require little to no maintenance from the site owners.
The ability to mark certain replay instructions as optional
prevents replay failures due to web page non-determinism.
Unlike our robustness tests, the site owners will also know
when the layout of their site changes and can update the
recordings accordingly.

The automated large-scale crawl shows that Form-
guard can be used to efficiently search for, detect and
fill in online forms at scale. The issues with the detected
leaks for the automated crawl highlight the importance of
sanity checking automated crawl data. Instead of trying to
find a submit button, the crawler used the form.submit
method of the last filled elemen. This approach triggered
accidental leaks of the filled values on certain websites,
which would not have been encountered if submit button
was clicked. We plan to adopt a form submission method
that better reflects how users submit forms — by clicking
the submit button. In addition to the email and password
fields, the automated crawl mode could be expanded to
detect and fill other fields, such as username and telephone
fields.

We do not present Formguard as a compliance check-
ing tool, because that requires more in-depth knowledge of
the business and data processing practices of the website
under test. Formguard’s main use is allowing the recording
and replaying of realistic interaction with a page, and the
detection of leaks during these replays. The recorded data
of a visit can additionally be used by the website owner
for additional checks, such as checking cookies and HTTP
headers.

8. Limitations

As with all automated measurements, there is risk that
our crawler is detected as a bot and treated differently.

We tried to prevent this as much as possible by adding
human like behaviour to clicking and typing and running
the crawler in headful mode within a virtual display.

As mentioned previously, the form submission method
used in the crawl leads to non-representative results, but
this does not impact the detection of leaks in the replays.
In the replay mode, forms are submitted exactly how they
were submitted during the recording — likely by clicking
the submit button.

Our web measurements are taken from a vantage point
in the EU, and involved giving consent to all personal
data processing and cookies. We plan to expand our
measurements to other vantage points and consent modes
(e.g. Reject).

9. Conclusion

We presented Formguard, a tool that allows website
owners to perform periodic privacy tests involving com-
plex flows on their websites. Using Playwright’s code-
gen functionality, Formguard allows website owners to
record and replay complex flows, while monitoring for
unexpected data exfiltrations, among others. Thanks to its
low-level access to the JavaScript engine via the Chrome
DevTools Protocol, Formguard can also be used to detect
supply chain attacks involving compromised third-party
scripts.

Through a long-term robustness test that lasted more
than three months, we showed that Formguard recordings
can function for several months without any maintenance.
Features such as fuzzy frame matching and optional in-
structions provide greater resilience against replay break-
age due to website changes. Finally, our large scale web
crawl shows that Formguard can reliably discover and fill
in forms at scale using ML models adopted from an earlier
study. This suggests that Formguard can be used for large-
scale web studies in different domains beyond just security
and privacy.

In conclusion, Formguard combines low-level moni-
toring with automated interaction replay to enable con-
tinuous privacy testing on the web. Our evaluation shows
that this approach is both reliable and scalable, supporting
long-term operation with minimal maintenance.

Code Availability

The source code of the crawler and the record-
ings used for the robustness test can be found at



https://github.com/TimVlummens/Formguard
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